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DEVELOPMENT OF A MULTI-SCENARIO SIMULATION MODEL FOR 
SPARE PARTS INVENTORY OPTIMIZATION IN MINING 

OPERATIONS 
 
 
 

Şenses, Sena 
Master of Science, Mining Engineering 

Supervisor: Assist. Prof. Dr. Onur Gölbaşı 
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The growing market competition compels many industries to change their 

operational structures at strategic and operational levels dramatically. It has been 

recognized that inventory management requires continuous monitoring and 

improvement and it is vital for businesses to ensure smooth operations by avoiding 

production loss and reducing the overall cost of inventory. For various production 

companies operating in different industries, inventory is considered as one of the 

most expensive assets. Among different inventory types, the spare parts inventory is 

of great importance for production management in ensuring high equipment 

availability at a minimized operating cost. 

In the mining industry, mass and continuous production should be sustained with an 

incontrovertible contribution of high-capacity equipment. Due to the high 

operational loads, complexity, and cost of the mining machines, unplanned 

downtimes resulting from spare parts' unavailability may cause a great financial loss. 

Among different types and classifications of spare parts available in a mining spare 

parts warehouse, tires are significant for operations where wheel machineries are 
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used. In open-pit operations where trucks with varying capacities are extensively 

employed for material hauling operations, tires can account for up to 20% of the total 

operating costs. In addition, any tire shortage in a warehouse may lead to tremendous 

production loss. In this regard, the current study intends to develop a discrete-event 

simulation algorithm for optimizing spare parts inventory problems in various 

inventory systems, giving the cost-wise best output among all the scenarios by 

utilizing Arena® Software. Within the scope of generating these scenarios, different 

parameter combinations of four inventory policies, namely (s, Q), (s, S), (R, Q), and 

(R, S), are utilized. 

The proposed algorithm is implemented for the tires of a truck fleet, which covers 

seven identical trucks with six tires each and operates in a surface coal mine in 

Turkey. In this study, four well-known inventory policies are utilized to evaluate 

both continuous and periodic inventory review approaches. For the continuous 

reviewing approach, (s, Q) and (s, S) policies are identified, while (R, Q) and (R, S) 

policies are discussed for the periodic reviewing approach. On this basis, a total of 

637 scenarios are generated from the inventory policies built based on different 

reviewing and triggering mechanisms, and each scenario is simulated for five years. 

The results show that the most optimal scenario for continuous review inventory 

policy is observed to be (s=9, S=49), where spare parts are ordered up to an inventory 

level of 49 whenever the number of components in the inventory drops to 9. 

Similarly, the most optimal scenario for periodic review policy is observed to be 

(R=6480, Q=45), where the fixed batch size of 45 is ordered every 6,480h. 

Accordingly, the annual system cost is observed as $2,604,032 and $2,608,617 for 

the best-case scenarios of continuous and periodic review policies, respectively. 

Besides, it was observed from both policies that the model is capable of ensuring the 

balance between the cost items by allowing stock-out to a certain extent in the best-

case scenarios. 

Keywords: Inventory Management, Spare Parts Inventory, Mining Trucks, Tire 

Inventory, Discrete-Event Simulation 
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ÖZ 

 

MADEN İŞLETMELERİNDE YEDEK PARÇA ENVANTER 
OPTİMİZASYONU İÇİN ÇOKLU SENARYOYA SAHİP BİR BENZETİM 

MODELİ GELİŞTİRİLMESİ  
 
 
 

Şenses, Sena 
Yüksek Lisans, Maden Mühendisliği 

Tez Yöneticisi: Dr. Öğr. Üyesi Onur Gölbaşı 
 

 

Ağustos 2021, 108 sayfa 

 

Artan pazar rekabeti, birçok endüstri için operasyon yapısını stratejik ve operasyonel 

seviyelerde önemli ölçüde değiştirmeye zorlamaktadır. Operasyonların sorunsuz bir 

şekilde yürütülmesini sağlamak için, fırsat kaybını önleyip toplam envanter 

maliyetini azaltarak, verimli bir envanter yönetimi elde etmenin hayati önem taşıdığı 

kabul edilmektedir. Envanter, çeşitli sektörlerde faaliyet gösteren birçok şirket için 

en maliyetli varlıklardan biri olarak düşünülmektedir. Farklı envanter türleri arasında 

yedek parça envanteri, minimum işletme maliyeti ile yüksek ekipman 

kullanılabilirliğini sağlama hedefine ulaşmada büyük önem taşımaktadır. 

Madencilik sektöründe, karşılanması gereken seri ve sürekli üretim gereksinimi, 

yüksek kapasiteli makinelerin yadsınamaz katkısıyla sağlanmaktadır. Maden 

makinelerinin büyük operasyonel yükleri ve pahalılığı nedeniyle, yedek parça 

bulunamamasından kaynaklanan plansız duruşlar büyük maddi kayıplara neden 

olabilmektedir. Bir madenin yedek parça deposunda bulunabilecek farklı yedek 

parça türleri arasından lastikler, tekerlekli makinelerin kullanıldığı operasyonlar için 

büyük önem bir önem arz etmektedir. Hafriyat ve nakliye operasyonları için çeşitli 

kapasitelere sahip kamyonların yoğun olarak kullanıldığı açık ocak işletmelerinde, 



 
 

viii 
 

lastikler, toplam işletme maliyetlerinin %20'si kadarını oluşturabilmektedir. Ayrıca, 

ihtiyaç olduğu anda depoda yeterli sayıda lastik bulunmaması da kayda değer bir 

üretim kaybına, dolayısıyla ek maliyetlere yol açabilmektedir. Bu bağlamda, mevcut 

çalışma Arena® yazılımı kullanarak, bir yedek parça envanter optimizasyonu 

problemi için çok senaryolu bir ayrık olay simülasyon algoritması geliştirmeyi 

amaçlamaktadır. Bu senaryoların oluşturulması kapsamında, (s, Q), (s, S), (R, Q) ve 

(R, S) olmak üzere dört farklı envanter politikası ve bu politikaların farklı parametre 

değerleri kullanılmaktadır. 

Geliştirilen algoritma, Türkiye'de bir açık ocak kömür madeninde faaliyet gösteren, 

her biri altı lastiğe sahip yedi kamyondan oluşan bir kamyon filosunun lastik 

envanteri için uygulanmıştır. Bu çalışmada, hem sürekli hem de periyodik gözden 

geçirme yaklaşımlarını kapsayacak şekilde, iyi bilinen dört envanter politikası 

kullanılmıştır. Buna göre, sürekli gözden geçirme politikası kapsamında (s, Q) ve (s, 

S) politikaları, periyodik gözden geçirme politikası kapsamında (R, Q) ve (R, S) 

politikaları belirlenmiştir. Farklı çalışma dinamiklerine sahip dört envanter 

politikasından, toplam 637 senaryo oluşturulmuş ve her bir senaryo beş yıllık bir süre 

için simüle edilmiştir. Elde edilen sonuçlara göre, sürekli gözden geçirme envanter 

politikası için, envanter seviyesi 9'a düştüğünde, bu seviyeyi 49'a çıkaracak kadar 

yedek parçanın sipariş edildiği, (s=9, S=49) senaryosunun en iyi senaryo olduğu 

gözlemlenmiştir. Benzer şekilde, periyodik gözden geçirme politikası için, her 6,480 

saatte bir 45 adet yedek parçanın sipariş edildiği, (R=6,480, Q=45) senaryosunun en 

iyi senaryo olduğu gözlemlenmiştir. Buna göre, sürekli ve periyodik gözden geçirme 

politikalarının en iyi durum senaryoları için yıllık sistem maliyeti sırasıyla 

2,604,032$ ve 2,608,617$ olarak elde edilmiştir. Bunlara ek olarak, her iki senaryoda 

da, maliyet kalemleri arasındaki dengenin, sistemin envanter yetersizliğinden 

kaynaklanan duruşlara belirli bir ölçüde izin vermesiyle sağlandığı gözlemlenmiştir. 

Anahtar Kelimeler: Envanter Yönetimi, Yedek Parça Envanteri, Maden Kamyonları, 

Lastik Envanteri, Ayrık Olay Simülasyonu 
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CHAPTER 1  

1 INTRODUCTION  

1.1 Background 

Globalization and the increasing competition lead various industries to change their 

strategical and operational policies. The competitive elements of adapting to the 

dynamic industrial environment, improving responsiveness to the consumer market, 

and maintaining the market share can be mitigated with powerful technical strategies 

(Guo et al., 2019). Operations management has long recognized that efficient 

inventory management has great importance on businesses for ensuring the smooth 

running of operations, avoiding opportunity loss on sales, and reducing the overall 

cost of inventory. For many companies, the inventory which may represent as much 

as 50% of the total invested capital, is considered as one of the most expensive assets 

(Heizer et al., 2017). 

Inventory is the number of items kept in the stock by a business organization to meet 

the customer demand and/or satisfy the spare part requirements of the machinery-

based operations. Several functions can be served by the inventory that provides 

flexibility to the organization activities. Inventory management covers the 

optimization of inventory ordering and holding decisions considering customer 

satisfaction, supplier capability, and production schedules, such that the total 

inventory-related costs will be minimized. Customer demand is the starting point of 

the inventory management, which can be internal for a spare part and/or not 

completed product, or external for a finished product. In either case, achieving 

proactive, accurate, and efficient inventory management is crucial. There is a trade-

off between the service level and the investment in the inventory that should be 

optimized in such problems. There are four common types of inventories that 

organizations maintain to serve the functions of inventory (Heizer et al., 2017). 
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Three of them, which concern raw material, work-in-process, and finished goods are 

generally related to the organizations supplying products to customers. On the other 

hand, operating supply/maintenance inventory type is generally associated with the 

organizations demanding necessary parts to keep machinery and processes in an 

operable state. In this sense, the inventory problem can be handled in two separable 

perspectives, depending on whether the organization is a supplier or a demander. 

There is a third category fitting into both perspectives and is called a multi-echelon 

system.  

For the organizations, whose aim is to ensure mass and continuous production by 

achieving a high equipment availability with a lower cost, the management of 

operating supply/maintenance inventory, also called spare parts inventory, becomes 

a major challenge. Spare parts are indicated as common inventory stock items, 

essential for maintaining the equipment (Hu et al., 2018). Spare parts management 

is inclusive of various research areas, which can be specified as, inventory control, 

supply chain management, and demand forecasting (Rosienkiewicz et al., 2017). 

Although various models have been developed for the spare parts inventory 

management problem regarding the different inventory policies built based on 

different review and triggering mechanisms, ensuring the continuous improvement 

of these models has always been a necessity. 

In this sense, the current study intends to develop a simulation algorithm to optimize 

the spare parts inventory problem, which can be experienced in different inventory 

systems ensuring the mass and continuous production by high equipment availability 

in an operating environment with high uncertainty. The developed algorithm is also 

implemented for the tire spare parts of a truck fleet in a coal mine by using different 

inventory policies, and investigating their effects on equipment availability and total 

inventory related costs. 
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1.2 Problem Statement 

With the growing competition on market share, inventory management representing 

as much as 50% of the total invested capital has become of great importance, 

especially for companies playing a crucial role in the national economy and carrying 

on a business with sophisticated technologies (Balakrishnan et al., 2013). For many 

industries, the uncertainty at the operational level is quite high, and the machine-

intensive operating systems are required to ensure the intended production rate and 

high equipment availability at a minimized operating cost. Indeed, for such systems, 

operations may be performed in very challenging working environments holding 

high stochasticity to forecast the failure profiles of machinery components and the 

resultant spare part requirements. On this basis, large operational loads and 

operational complexity may lead to unplanned downtimes with tremendous 

production loss. One of the main reasons for unplanned downtimes is the 

unavailability of spare parts when required in maintenance activities (Qarahasanlou 

et al., 2017). On the other hand, overstocking may cause inadequate storage space 

and deterioration of parts as well as high capital expenditures which is vital for the 

companies using sophisticated technologies in large-scale operations. Therefore, 

developing new technological and managerial methods is crucial to control the spare 

parts inventories efficiently.  

Among various spare parts available in mining warehouses, tires have an essential 

effect, especially on loading, hauling, and auxiliary activities where wheel 

machineries are operated extensively. A tire may experience different failure modes 

throughout its lifetime and its ownership cost may variate depending on its active 

operating time and purchase price. Along with fuel cost and operator salaries, tires 

have a great share in expenditures and can account for 20% of the total operating 

cost in the mining industry (Meech and Parreira, 2013). Having an efficient tire spare 

parts inventory management can result in observable savings, considering that tires 

used in mining may cost up to $45,000 (Carter, 2007). In addition, since tires are 

structured with a series configuration in machinery, any downtime due to both 
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maintenance and tire stock-out conditions may cause financial consequences 

generally higher than the physical cost.  In this sense, implementing a multi-scenario 

simulation model for the optimization of the tire spare parts inventory problem has 

the potential to reduce the operating cost flow by minimizing the unexpected halts 

of machinery-based operations, and developing a trade-off between physical and 

non-physical cost items. 

1.3 Objectives and Scopes of the Study 

The main objective of this study is to develop a multi-scenario simulation model for 

the optimization of spare parts inventory problems that can exist in various inventory 

systems considering different inventory policies. Sub-objectives of this research 

study can be summarized as i) identifying inventory management system 

characteristics, ii) developing mutual mathematical interactions among inventory 

and maintenance dynamics, iii) pre-processing of the data and assessing parameters, 

iv) executing the simulation model in a discrete-event simulation (DES) 

environment, v) analyzing effects of the inventory policies on the equipment 

availability and total system cost, and vi) determining the cost-wise best output 

among all the scenarios.  

Within the research scope, the multi-scenario structure of the system is considered 

to be built as a function of different inventory policies, which are (s, Q), (s, S), (R, 

Q), and (R, S) policies, and the policy parameters holding different decision 

dynamics. In addition, random lifetime, random repair time, and the random lead 

time of the spare parts construct the stochastic structure of the simulation model. For 

the implementation of the algorithm, the tire spare parts of a truck fleet operating in 

a surface coal mine is taken as the target component. At this point, five-year dataset 

of seven 177 tonne trucks between 2015 and 2019 is processed and introduced to the 

algorithm. 
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1.4 Research Methodology 

This research study utilizes a stochastic structure to analyze a multi-scenario 

inventory management system behavior. The research methodology carried out in 

this study is illustrated in Figure 1.1.  

 

Figure 1.1 Research Methodology of the Thesis Study 

The main research methodology steps are given as follows: 

i. Identification of system's structure, functional dependencies and boundaries 

with decomposing the system into its components, depending on the 

evaluation of quantitative failure, repair datasets and expert opinions. 

ii. Development of a simulation algorithm in discrete-event simulation 

environment by introducing the system configuration, failure-specific 

maintenance actions, and indicated inventory policies. 

Defining the 
System 

•Identification of the system dynamics
•Evaluation of quantitative datasets and expert opinions

Model 
Development 

•Development of discrete-event simulation model
•Integration of effective system parameters

Case Study

•Implementation of the case study
•Optimization of the simulation model

Analysis of 
Results

•Analysis and evaluation of the optimization results
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iii. Implementation of the case study and optimization of the introduced 

inventory policies and their parameters with monitoring and reporting the 

random operating hours, repair times, and production loss times as well as 

total inventory related system cost. 

iv. The output analysis of the system under different scenarios which consist of 

different inventory policies having varying parameters, and evaluating the 

sensitivity of the total inventory related system cost to changing system 

decisions. 

1.5 Significance and Expected Contributions of the Thesis Study 

Despite that various studies have been performed about inventory management, 

multi-scenario simulation modeling of spare parts inventory management has not 

been studied in detail. Moreover, the implementation of spare parts inventory 

management in mining is highly limited. Indeed, the related studies in mining 

industry covering the tire management concept mostly focus on analyzing the factors 

affecting tire management and improving the tire lifetime. In this regard, although it 

may have a remarkable effect on unplanned production halts, the tire spare parts 

inventory problem has not been attracted enough attention in the previous studies. In 

this sense, the current study intends to develop a simulation model for optimizing 

spare parts inventory problems in various inventory systems, considering different 

inventory policies with random component lifetimes, repair times, and lead times. It 

also covers the implementation of the developed model for a tire spare parts 

inventory management system. Hence, this study enables a detailed evaluation to 

reveal the effects of different inventory policies on the total inventory related costs 

and the equipment availability.
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CHAPTER 2  

2 LITERATURE REVIEW 

2.1 Introduction  

This section explains the terms related to inventory management, and the 

classification and working principles of the inventory policies to constitute a broad 

base of knowledge on the topic. In addition, it reviews the previous spare parts 

inventory studies applied in the mining industry. Lastly, tire management and event 

simulation concepts are extensively discussed.  

2.2 Inventory Management Concept and Classification 

As mentioned in Section 1.1, the inventory problem can be handled in two main 

perspectives, according to the system dynamics associated with the inventory type 

managed by the organizations, indicating whether the organization is a supplier or a 

demander. Also, there is a concept called a multi-echelon system that covers both 

supplier and demander perspectives.  

Inventory problems in the perspective of a supplier are generally referred to as lot-

sizing problems, which can be described as production planning problems having a 

structure with setups between production lots. Generating few setups by producing 

large quantities to satisfy the demand leads to high inventory holding costs. On the 

other hand, generating setups too often with producing fewer quantities leads up to 

the risk of unfulfilled demands, so the costs of stock-out as well as high setup costs. 

This situation creates a trade-off between inventory holding cost arisen to satisfy the 

demand and the costs that are incurred as a result of running out of stock. For a 

supplier, stock-out costs can be expressed as either a lost sale reflecting the risk of 

losing the competition in the market, or a back-order causing additional costs. 
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Therefore, the objective is to achieve effective utilization of resources, enhancing 

consumer satisfaction by minimizing all related expenses. In addition, multi-echelon 

inventory systems are evaluated in terms of the effective coordination between the 

procurement planning, which decides when and how much raw material is to be 

procured from the suppliers, and the production planning, which decides when and 

how much end product is to be produced to send to the customers. This coordination 

is achieved by multi-echelon supply chain management. As it is shown in Figure 2.1, 

multi-echelon inventory systems have multiple stages, such as raw materials 

supplier, distributor, manufacturer, retailer, end product supplier, and final customer, 

in which each stage has one or more members. The objective is to enhance the 

performance of the entire chain through the joint optimization of procurement and 

production planning in such a way that the related costs are minimized. 

 

Figure 2.1. Multi-echelon Supply Chain Network 

Inventory problems in the perspective of a demander are generally referred to as 

spare parts inventory management problems. In practice, spare parts inventory 

management is strongly interconnected with maintenance management. While the 

need for corrective or preventive maintenance generates the demands of the spare 

parts, maintenance activities are carried out relying on the availability of the spare 

parts. Thus, the spare parts inventory problems have usually been studied as the joint 

system of inventory and maintenance management in the related literature. 

Dynamics of the spare parts inventory management differ from other manufacturing 

Suppliers                    Plants                  Warehouses        Distribution Centers                 
C t  
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inventory managements, which are work-in-process and finished products. Firstly, 

system functions and purposes are different. Work-in-process inventories are 

designed for smoothing out all forms of irregularities in a production flow, and 

finished product inventories are designed for protecting the system from all types of 

abnormalities in delivery flow. On the other hand, spare parts inventories are not 

intermediate products to be processed or final products to be delivered to a customer. 

They ensure that machine components are available in warehouses in case of any 

maintenance requirement. Secondly, management strategies are different for 

inventory policy applications. Work-in-process and finished product inventory levels 

can be changed depending on the operational decisions such as production rates, 

schedules, product quality, and service level. However, the inventory levels of spare 

parts are determined as a function of the maintenance activity applied and the 

deterioration mechanism of the operating system (Kennedy et al., 2002). Finally, 

most of the spares required for maintenance works are slow-moving parts that need 

high investment. Thus, unlike fast-moving manufacturing inventories, spare parts are 

generally characterized by intermittent or lumpy demand. 

Spare parts management is crucial in terms of preventing significant economic losses 

by ensuring continuous production with high efficiency. At this point, placing few 

orders with large quantities to satisfy the demand leads to an over-storage problem, 

which may cause inadequate storage space, deterioration of parts, high inventory 

holding costs, and high capital investment flow. Managing capital flow is of vital 

importance, especially for companies carrying on a long-running business with 

sophisticated technologies. On the other hand, placing orders too often with fewer 

quantities leads to the risk of unfulfilled demands, so the costs of stock-out as well 

as high ordering costs. For a demander, stock-out costs can be expressed as 

production loss, damage in production scheduling, and the penalty costs, due to 

extended equipment downtime or equipment unavailability or plant shutdown. 

Indeed, although the decisions on operational risk appetite can be changeable 

depending on the unit value of production as well as severity and occurrence 

likelihood of stock-out condition, the unavailability of spare parts can cause vital 

consequences, particularly for the companies that need to satisfy mass and 
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continuous production. As a consequence, this situation creates a trade-off between 

overstocking costs arisen to satisfy the demand and the costs incurred as a result of 

running out of stock. The detailed cause-effect diagram for overstocking and 

understocking spare parts from the perspective of a demander is shown in Figure 2.2. 

The main target of the spare parts inventory management problems is generally to 

optimize the inventory and the maintenance of the operating system, such that the 

joint cost of the system is minimized. 

There are two approaches used to maintain the inventory levels in joint systems, 

which are continuous review policy and periodic review policy. In the continuous 

review policy, the inventory levels are continuously checked to determine whether a 

particular condition is met, which is required to order the spares. There are two well-

known continuous inventory review policies: the (s, Q) and the (s, S) policy. In the 

(s, S) inventory policy, whenever the inventory level drops to the value of s, spare 

parts are ordered up to inventory level S. Despite that the inventory is triggered based 

on the same condition, in the (s, Q) policy, the order quantity of spares is equal to 

the fixed batch size of Q. In addition, these two policies work identically if Q is equal 

to (S-s) when there is a per-unit demand. In the periodic review policy, the inventory 

levels are checked at regular time intervals. If there is no additional condition to 

satisfy, spare parts are ordered at the beginning of each time interval. One of the 

commonly-used periodic review inventory policies is (R, s, S) policy. Inventory level 

is reviewed for every R period; spare parts are ordered up to inventory level S if the 

inventory level drops below s. When s is not specified, (R, s, S) policy becomes (R, 

S) policy where spare parts are ordered up to inventory level S in every R review 

period. Another well-known periodic review inventory policy is (R, Q) policy, where 

the spare parts of a fixed batch size of Q are ordered in every R review period. 

Boundaries and scopes of these inventory policies highly depend on business type, 

sector dynamics, and the corporate structure, where the work packages of the 

maintenance activities are established considering machinery usage and the financial  
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Figure 2.2. Cause-Effect Diagram of Overstocking and Understocking of Spare Parts 
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risk appetite of the company. Maintenance activities are categorized mainly into 

corrective maintenance (CM) and preventive maintenance (PM). Corrective 

maintenance is defined as restoring a randomly failed component to its operational 

state by a repairing or replacement activity.  Immediate CM and deferred CM are the 

two types of corrective maintenance, and they are implemented depending on the 

criticality of the failed component. On the other hand, preventive maintenance is 

defined as the process of detecting and fixing major defects that have the potential 

to turn into a failure soon if not intervened. Preventive maintenance can be classified 

as predetermined, condition-based and opportunistic maintenance. Predetermined 

maintenance is carried out at pre-arranged times depending on time and/or usage. In 

condition-based maintenance, maintenance activities are initiated when a measurable 

parameter representing the system state reaches a determined threshold limit value. 

Opportunistic maintenance is performed when a component failure results in the 

opportunity to preventively maintain another component, which is deteriorated but 

non-failed (Ben-Daya et al., 2016). Besides, preventive maintenance is referred to as 

preventive replacement, especially for non-repairable components since repairing is 

not an option. Similarly, a preventive replacement can also be applicable for a 

repairable component if its deterioration level is so high that any repairing activity 

cannot restore the component to an operationally-efficient level. The well-known 

and often used preventive replacement types can be categorized as age-based, block-

based, condition-based, and group replacement. In age-based replacement, the 

component is replaced either when it reaches the predetermined age or fails, 

whichever of these occurs first. Block-based replacement is initiated at pre-

determined times regardless of the component's failure history. In condition-based 

replacement, a component is replaced when a measurable parameter representing the 

system state reaches a determined threshold limit value. Group replacement occurs 

when a group of components is replaced at a fixed time and/or when the system 

reaches a certain age (Horenbeek et al., 2013). 

At this point, the previous works on inventory management, which can be classified 

under three different organization structure as supplier, multi-echelon, and 

demander, will be discussed in Section 2.2.1 to Section 2.2.3. 
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2.2.1 Inventory Management in the Perspective of a Supplier 

The objective of inventory problems in the perspective of a supplier is generally to 

achieve effective resource utilization, ensuring the optimal inventory and the steady 

production flow, to enhance customer satisfaction and to minimize the costs of setup, 

production and inventory so that the market share can be sustained in an effective 

and feasible way. In production planning, inventory management is generally 

adopted to production scheduling, quality management, capacity management, 

equipment, and supply management. The structure of lot-sizing problems can be 

examined in several different aspects. Planning horizon, number of production 

stages, number of products in the system, demand-type, and resource capacity 

constraints are the factors that affect the complexity of the problem (Suwondo and 

Yuliando, 2012). In this regard, Lu and Qi (2011) studied a single-stage dynamic lot-

sizing problem for a system with a multi-product, in which the replenishment of the 

inventories depends on a particular production output ratio determined for each 

product. Considering that the demand is deterministic dynamic and demand rejection 

is allowed, they proposed two heuristic algorithms for minimizing the total cost of 

total production, inventory, and lost sales costs. Noblesse et al. (2014) examined the 

lot-sizing problem in a capacitated single-stage and single-item production-

inventory system where the production lead time is stochastic and depends on the 

orders placed in the inventory model. Assuming a continuous review inventory 

policy, they developed a model to minimize the expected ordering and inventory 

costs per unit time to obtain optimal inventory parameters. 

In addition, setup cost and production schedule structures can characterize the 

problem. You et al. (2019) presented a mixed-integer linear programming model for 

the capacitated multi-stage lot-sizing problem under dynamic, time-varying 

production environment. By considering the time-varying setup cost and dynamic 

capacity constraint and defining the lead time as the preparations of subsystems, the 

production schedule is optimized so that the total cost, including production setup 

cost and the inventory-holding cost, is minimized over the planning horizon. Lot 

sizing problems may also consider the decisions on the product quality to determine 
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whether the deteriorated products will be remanufactured or not. In this point, 

Sonntag and Kiesmüller (2018) studied a single-stage and single-product production 

system considering random yield losses caused by stochastic proportional yield. It is 

assumed that the production quantity is determined by the order quantity required in 

the inventory to be refilled up to a level so that the stochastic customer demand can 

be satisfied. They developed a mathematical model to obtain the optimal base-stock 

level in a way that average inventory holding and back-ordering costs are minimized 

in a production environment where disposing and reusing decisions of defective 

items are included. Brulard et al. (2019) represented a mixed-integer linear 

optimization model combining a multi-dimensional and multiple-choice knapsack 

problem with a two-stage lot-sizing problem. The model integrated strategic and 

tactical decisions for a multi-technique, multi-product, and multi-client production 

system to maximize the economic revenue under some considerations such as 

deterministic dynamic demand, capacitated resources, and short-time perishability 

of products. 

Besides, decisions on the back-ordering concept may shape the problem structure, 

where an additional cost is incurred for each back-ordered unit per period. Li and Hu 

(2017) examined a single-machine, multi-product lot-sizing, and scheduling 

decision-making problem by proposing a two-stage stochastic programming model. 

By including stochastic workforce efficiency and stochastic demand with the 

allowed back-ordering, production sequence and lot sizes were optimized by 

minimizing the total expected system costs over the planning horizon. Altendorfer 

(2019) investigated a single-stage production/inventory system with stochastic 

advance demand information and limited capacity to simultaneously optimize the 

planning parameters, such as planned lead time, lot size, and safety stock. A heuristic 

optimization model applied to minimize inventory and back-order costs showed that 

the specific trade-off of the system is created by the demand information quality. 
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2.2.2 Inventory Management in the Perspective of a Multi-Echelon 

System  

In the literature, procurement policies for raw materials and production planning 

systems, which are related to lot-sizing decisions, were often studied separately so 

that the complexity of the integrated problem dimensions such as procurement, 

inventory, production, and scheduling can be reduced. However, in the recent 

studies, it has been observed that the coordination between procurement and 

production planning can be achieved by multi-echelon supply chain management 

concept (Song et al., 2014). Such problems generally have multiple objectives, but 

the primary aim is to improve the overall performance of the chain through the 

integrated optimization of procurement and production control for all stages, such 

that related costs are minimized by achieving a certain level of customer satisfaction. 

At this point, Song (2009) studied a joint optimization of ordering and production 

control in a chain of three entities. Considering stochastic demand arrivals, 

processing times, and replenishment lead times, the ordering and production policies 

were optimized by minimizing the cumulative of material and product holding costs 

and demand back-ordering costs subject to capacitated warehouses for both raw 

materials and finished goods. Taleizadeh et al. (2011) studied a supply chain problem 

including a multi-product, multi-vendor and multi-buyer parameters, where each 

vendor has warehouse capacity while each buyer uses (R, Q) inventory control policy 

to order with a limit to purchase products. The objective was to determine safety 

stock levels, reorder points and number of the shipments by minimizing the total cost 

of the supply chain, considering stochastic demand and variable lead time. Sana 

(2011) examined a supply chain problem for the supplier, manufacturer, and retailer, 

and proposed an integrated inventory-production model including product quality. 

An analytical method was implemented to determine optimal raw material order size 

and the production rate by considering the negligible lead time and constant demand, 

in order to maximize the total expected profit of the supply chain. Sana (2012) 

proposed an integrated model for a single-product supply chain system consisting of 

manufacturer, vendor, and retailer by considering the economic order quantity and 
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economic production quantity model. The objective was to maximize the expected 

average profit by detecting optimal order quantities, number of the shipments, and 

production rate of the joint system. Pal et al. (2012) proposed an integrated 

inventory-production model for a multi-echelon, multi-item supply chain system 

involving a manufacturer, multiple retailers, and multiple suppliers. It is considered 

that each end product is generated by combining raw materials at a certain percentage 

and delivered to the retailers where these products are sold based on the demand in 

the market. Song et al. (2014) developed an integrated inventory management policy 

for raw material procurement and production control in a manufacturing supply 

chain with multiple system uncertainties such as random customer demands, 

stochastic production times, and uncertain material supplies, in such a way that the 

expected total cost is minimized. Wang et al. (2015) modeled a joint lot-sizing and 

pricing problem in a two-echelon supply chain which includes a supplier 

manufacturing the products and a retailer selling them in the market. The objective 

was to optimize the selling price, order quantity, and lot size by maximizing the 

system-wide profit, considering the supplier’s finite production rate with price-

sensitive deterministic demand. Hlioui et al. (2015) studied a three-stage supply 

chain problem consisting of integrated production, replenishment, and quality 

decisions by regarding imperfect delivered lots and random lead time. A response 

surface methodology and a simulation model were applied to obtain the optimal 

parameters of a production strategy and a replenishment strategy, in such a way that 

the long-term expected total cost is minimized. Tewary et al. (2017) studied a four-

echelon inventory system consisting of a manufacturer, two warehouses, three 

distributors, and four retailers and framed a reorder interval based mixed integer non-

linear programming problem, where customer demand and lead times were 

considered as constant. The objective was to satisfy the customer demand and 

optimize the order lot size, production batch size, reorder interval and interval of 

production for manufacturer so that inventory cost through whole system is 

minimized. Mokhtari (2018) designed a solution algorithm for a defective 

manufacturing system in which the number of defective items and demand rate 

parameters were considered to be uncertain. The objective of this study was stated 
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as to jointly optimize the order lot sizes and production by achieving the 

minimization of the total cost of the system. Das et al. (2019) extended this 

deterministic modeling technique to a stochastic model for a multi-echelon 

distributive system with a continuous review inventory policy in order to determine 

the optimal values of the reorder point, safety stock quantity, order quantity, and 

service level in each stocking point. 

2.2.3 Inventory Management in the Perspective of a Demander 

In the perspective of a demander, the common objective is to develop optimal 

policies for timely and adequate procurement and stocking of spare parts inventories 

and the maintenance of the operating system, so that the joint cost of holding, 

ordering, stock-out of spare parts, and maintenance is minimized (Samal and 

Pratihar, 2015). In practice, spare parts inventory management problem can be 

characterized by several aspects relying on the type of the preventive maintenance 

policy applied, individual characteristics of inventory policy, the number of 

operating parts, and the deterioration characteristic of the system (Panagiotidou, 

2014). The related studies in the literature have implemented the inventory control 

policy along with the preventive maintenance policy and considered the optimization 

of policy parameters jointly. Some researchers have considered the simultaneous 

optimization of inventory control and age-based preventive replacement, in which a 

part is replaced at a particular age or a failure, whichever occurs first. Armstrong and 

Atkins (1996) examined a system consisting of a single component with a random 

failure rate, where only one spare component is allowed to be kept in stock. The 

objective was to obtain a joint optimization model of spare ordering policy and age-

based replacement policy, in such a way that the long-run average cost including 

replacement, shortage, holding, and breakage costs were minimized. Xu et al. (2011) 

proposed a joint optimization model of spare part inventory control policy and age 

replacement policy for a single unit system. In the study, optimal values of the 

maximum stock level, the inventory replenishment cycle length, and the preventive 

replacement interval parameters are established, by minimizing the total cost. Gan et 
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al. (2015) performed a mathematical analysis for a production system comprised of 

two serial machines, an intermediate buffer, and a spare parts inventory. In order to 

minimize the long-term expected cost rate, a genetic algorithm was utilized and the 

optimal values of the control parameters consisting of the initiating time of buffer 

accumulation, the buffer size, the spare parts arrival time, and the preventive 

maintenance age were obtained. Panagiotidou (2019) studied a joint optimization of 

preventive replacement time and spare parts ordering policy, for systems with 

multiple identical operating items under an (s, S) continuous review inventory policy 

and age-based preventive replacement policy. The model represents the analytical 

interrelationships between the ordering policy and the replacement and jointly 

optimizes the values of continuous review policy parameters and preventive 

replacement age so that the expected total cost per time unit is minimized.  

Some other researchers have studied the joint optimization of inventory policy and 

block-based preventive replacement, where a part is replaced at pre-arranged times 

regardless of the failure history. Huang et al. (2008) studied a generalized joint 

optimization policy of block replacement and periodic review spare inventory with 

random lead time. Nguyen and Bagajewicz (2010) investigated a system to jointly 

optimize the spare parts inventory policy, the preventive maintenance frequency, and 

labor allocation by utilizing a genetic algorithm. Kader et al. (2013) studied an 

integrated spare parts inventory and block type preventive maintenance problem for 

non-self-announcing manufacturing systems of one type of product, which is 

subjected to the random failure rate. Considering system degradation and an 

inventory policy of (s,Q) where s equals to zero, a mathematical model was 

developed based on cost criteria. It was aimed to determine the optimal preventive 

replacement period and the optimal order quantity of spare parts, in a way that total 

operating costs, including maintenance and spare parts cost, is minimized over a 

finite horizon. Jiang et al. (2015) investigated a multi-unit system with inventory 

deterioration and proposed a joint optimization model of periodic review inventory 

and block replacement policies. In the study, the total expected cost rate of the system 

was minimized where decision variables are defined as maximum inventory level 

and preventive replacement interval. Samal and Pratihar (2015) developed a novel 
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approach for joint optimization of spare parts inventory and preventive maintenance 

problems, which determines the optimal spare parts ordering and preventive 

maintenance intervals jointly. The optimal time interval values were obtained by 

utilizing non-traditional optimization tools so that the cumulative cost rate of spare 

parts inventory and preventive maintenance was minimized under an (R, S) 

inventory policy where R is the block preventive maintenance cycle. 

In some studies, the spare parts inventory problem has been considered together with 

condition-based preventive replacement, in which the replacement is performed 

when the system state reaches a pre-determined threshold. Vaughan (2005) presented 

a stochastic dynamic programming model to determine an optimal inventory policy 

of spare parts considering random failure and preventive maintenance as two sources 

of demand. An optimal spare parts inventory control policy was developed to 

minimize the total expected cost of the inventory system over periods by managing 

the non-stationary demand, under the assumption of no backlogging and one-period 

of replenishment lead time. Wang (2012) studied a joint optimization problem 

covering preventive maintenance inspection interval, spare parts inventory control, 

and the delay-time concept connecting the inspection interval with the failure 

numbers. A stochastic dynamic programming was employed to minimize the total 

system cost by assuming a periodic review and (S, Q) ordering policy under a fixed 

order lead time. Panagiotidou (2014) a studied the joint model of spare parts ordering 

and maintenance for multiple identical operating items, which are periodically 

inspected and can be preventively maintained, repaired, or replaced depending on 

their conditions. The optimization was performed by giving ordering decisions for 

spare parts and maintenance activities jointly. A real case was implemented and 

determined the optimal spare parts ordering quantity, time and inspection interval by 

minimizing the total cost values regarding two ordering policies which are a 

continuous review policy (s, S) and a periodic review policy (R, S).  Keizer et al. 

(2017) studied an integrated problem of inventory and condition-based maintenance 

for a system containing multiple components with a shared pool of spares. Assuming 

that the system is monitored through periodic inspections and lead time is fixed, the 

model is formulated as a Markov Decision Process where the inventory policy 
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parameters are determined through minimizing long-run average cost. The 

performance of the model was compared by applying an (s, S) policy to a single 

component system. Zhang and Zeng (2017) utilized semi-regenerative process 

theory to determine a joint strategy to optimize periodic condition-based 

opportunistic preventive maintenance and a spare parts provisioning policy. A 

multiunit system with multiple identical units could be optimized by minimizing the 

expected cost rate considering constant order lead time and (R, s, S) inventory policy. 

2.3 Spare Parts Inventory Problem in the Mining Industry 

Management of demand intervals and quantities of spare parts correlated with the 

frequency and profile of maintenance activities applied in a production area is called 

spare parts inventory policy. How to establish the boundaries and scope of such a 

policy depends on the sector dynamics in terms of machinery usage and the 

company's financial risk appetite. On this basis, the unit economic value of a mining 

operation variates largely depending mostly on the related commodity prices, 

periodical production rate of the company, demand level in the market, and the 

customer mass and available gaps in the sales potential. Spare parts inventory 

policies, as an integral part of maintenance policies, are of capital importance, 

especially in machine-intensive sectors such as mining, where uncertainty in the 

operational level is quite high and should be managed carefully not to interrupt the 

resultant turnover of production. 

In one of the related studies, Ghodrati and Kumar (2005) examined the effect of the 

operating environment on inventory stock levels of replaceable components. In the 

study, how the factors related to operator efficiency, maintenance crew efficiency, 

quality of hydraulic oil, climate conditions, and operating environment may affect 

the inventory decisions of the hydraulic brake pump of wheel loaders in a mining 

company was investigated. Ghodrati et al. (2007) developed an event tree diagram 

to visualize and estimate multiple possible combinations of the decisions that can be 

effective in the success of spare parts inventory management. In this sense, 

probabilistic consequences of sequential inventory decisions were considered in an 
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application conducted for the loaders in an iron mine. Wang et al. (2009) investigated 

how condition monitoring indicators can be integrated into an inventory policy by 

applying the developed methodology to the motors of haul trucks in a mine. At this 

point, aggradation of iron and sedimentation levels in the motor oil were considered 

to be valid indicators of motor deterioration and the resultant spare part requirement. 

Louit et al. (2010) developed a dynamic control model of the service rate in a single-

server queuing system to optimize the inventory policy of critical repairable spare 

components for a fleet of mobile mining equipment. The policy was defined in the 

form of (S,χ), where S is the optimal stock size and χ is the optimal expedited repair 

trigger level, under the consideration of minimization of expected cost per unit time 

for the inventory system in the long run. Louit et al. (2011) built up a multi-objective 

inventory optimization model where the model objective could be switched as 

minimizing cost, maximizing simultaneous reliability, maximizing reliability in a 

time-interval, and maximizing availability. The developed model was applied to a 

repairable component of haul truck in a mine. Martinez et al. (2016) constructed an 

integrated inventory model where insurance policy against production loss due to the 

stock-out condition of spare parts was included. The model was implemented for an 

unrepairable component of a hydraulic excavator in a mine. Rosienkiewicz et al. 

(2017) investigated the problem of lumpy demand forecasting that is typically 

observed in heavy machinery spare parts business. The research conducted in the 

paper pointed out that spare parts in the mining industry have a characteristic of 

lumpy demand, where it is vital for the inventory management because of the 

difficulties in modeling and forecasting such type of demand. The goal of the study 

was to develop a new hybrid spare parts demand forecasting method, which can be 

used in the mining industry, by combining artificial neural networks and regression 

models. The proposed model was applied to forecast the future demand for three 

spare parts of a haulage vehicle, based on real data from a copper mine. Zhang et al. 

(2018) developed a cost-minimization model of a shared-inventory problem where 

multiple companies use a common spare parts inventory. The model was applied for 

a shared-inventory of three gold mines in such a way that the total cost of 

procurement, stocking, and production loss was minimized. Gölbaşı (2019) 
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developed a simulation algorithm to measure the impact of the applied spare parts 

policy on the production loss, also referred as system availability. The algorithm was 

applied for a dragline employed in a coal mine, and quantitatively verified with a 

numerical example. Şenses, Gölbaşı and Bakal (2021) presented a mixed-integer 

mathematical model to optimize the order lot sizes and the schedule of the lubricating 

oils used in a mining company to minimize the total inventory cost. The model was 

implemented to a multi-item and multi-supplier system under block-based 

preventive maintenance and continuous review inventory policy. The optimization 

results revealed that the model can improve the company’s current lubricating oil 

inventory policy by yielding a total saving up to ₺18,566. 

2.4 Evaluation of Tire Component as a Critical Spare Part  

This section explains the evaluation of a tire component as a critical spare part. First, 

the structure of a tire component, the classification and working principles are 

explained. In addition, the terms related to tire management in mining and tire failure 

types are comprehensively discussed. Last, the previous tire management studies 

applied in mining industry are reviewed. 

2.4.1 Structure of a Tire 

A tire is the part of a vehicle that is fitted on the rim and filled with compressed air, 

ensuring contact with the ground. Besides providing and maintaining the traction, 

braking, and direction of travel, tires also maintain load carry-ability of vehicles and 

absorb vibrations and shocks caused by contact with the ground. Tires are mainly 

divided into radial and bias tires depending on the belt construction leading to 

changes in the contact surface with the ground. Tire types can also be categorized by 

i) the inner tube construction as tubeless and tube-type tires, ii) the season as summer, 

winter, and all-season tires or iii) the application as passenger car, light truck, and 

off-the-road tires. Tires have a composite structure consisting of steel synthetic 
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reinforcements, rubber compounds, and textile (Goodyear, 2010). The main 

components of radial and bias tires are shown in Figure 2.3. 

 

Figure 2.3 Structural Diagram of Radial Tire (a) and Bias Tire (b) (Yokohama 

Rubber Co., 2021) 

For radial tires, the cords constructing the carcass are arranged perpendicularly to 

the centerline of the tread, while they are intersected at a diagonal approximately 40 

degrees from the centerline for bias tires. The radial tires ensure more contact with 

the ground transferring more power, more stability at speed, lower friction, and lower 

heat comparing to bias tires. On the other hand, bias tires allow more compliant ride 

off-highway, and are typically less expensive. The functions of radial and bias tires 

are briefly explained as follows (Yokohama Rubber Co., 2021): 

i. Belt - With multiple steel cord layers, provides strength to the tire, stabilizes 

the tread, and protects the carcass from penetrations. 

ii. Carcass - Transmits the steering and braking forces between the road and the 

wheel and carries the load of the tire under operating pressure. 

iii. Inner Liner - Inner walls of tubeless tires are lined with a layer of rubber 

constructed to prevent the air loss. 

iv. Bead - Fixes the tire on the rim properly and maintains it in position. 

v. Bead Wire – A ring-shaped steel wires to reinforce the material in the tire. 

(a) (b) 
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vi. Chafer - A layer of hard rubber protecting the bead zone from erosion caused 

by rim chafing.  

vii. Sidewall - Protects the carcass and provides resistance to weathering and 

flexing.  

viii. Tread - Outermost part of the tire that contacts with the road surface and 

provides traction while protecting the tire body.  

ix. Breaker - Protects the carcass from the cuts in the tread and helps to absorb 

shocks. 

2.4.2 Tire Management in Mining 

Tires of material excavation and hauling vehicles used in several types of operations, 

including agricultural, forestry, and mining industries, are usually subject to harsh 

environmental conditions. Purchasing costs of these tires, which need to meet the 

safety requirements in the field and can reach up to 4m in diameter based on the 

application, are extremely high. Therefore, tire failure, besides being a safety hazard, 

is indeed a costly event resulting in loss of production and time (Kotchon et al., 

2012). 

In the mining industry, tires are frequently-used spare parts for wheel machinery 

employed in material loading, material hauling, and auxiliary operations in 

demanding mining environment. Tires can account for 20% of the total operating 

costs, such that the tire-related costs of a truck throughout its lifetime may exceed 

the truck's initial purchase price (Meech and Parreira, 2013). The effect of premature 

tire failure on the direct cost is evaluated based only on its remaining lifetime. 

However, there are also some indirect costs incurred, such as the additional labor 

cost and the lost production time, considering that a tire replacement can take up to 

8 hours depending on the waking conditions (Kagogo, 2014). Therefore, a tire 

inventory policy applied in a mining area should consider various factors such as, 

characterization of equipment fleet, production rate, equipment availability, and tire 

failure frequencies. A tire inventory policy should be constructed in such a way that 
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direct and indirect cost flows related to tire inventory and tire unavailability should 

be minimized.  

Fluctuations in the numbers of spare parts available in a warehouse depend on the 

failure modes spare parts are exposing to, their frequencies, and maintenance work 

packages applicable to each failure mode. On this basis, tire failure levels variate, 

from slight damage to a hazardous one that can threaten driver safety. Three major 

types of tire failures are generally observed in mining areas, which are cuts and 

punctures, impact damage, and irregular wear. Any of these failure modes can occur 

single or multiple times throughout a tire’s lifetime with varying frequencies. At this 

point, 80% of large tires is detected to have at least one failure before their wearing 

out where cuts are responsible for about 45 percent of these failures (Cat Global 

Mining, 2007). Cuts and punctures are caused by external factors such as unfavorable 

road conditions and sharp objects on the road that can pierce through the tire's 

surface. Although a tire may lose air pressure due to cuts or punctures, it might still 

be repairable if the damage is under a certain tread thickness. On the other hand, an 

impact break is usually caused by driving over potholes or obstacles on the road at 

excessive speed or wrong angles. Consequently, the tire sidewalls may disintegrate 

or the tread and plies may delaminate. In addition, the bulge incurred on the tire may 

weaken tire structure and increase the likelihood of failure occurrence (Continental, 

2020). Moreover, irregular tire wear can occur in several ways during rolling and 

sliding contact of tires with the ground through abrasion and ablation mechanisms, 

mainly caused by fatigue. These mechanisms may cause different wearing 

formations on the tire surface, so the tire wear classification is closely related to the 

formation of the worn surface (Klüppel, 2014). The most typical forms of irregular 

tire wear are illustrated in Figure 2.4. 
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Figure 2.4 Tire wear types – Center wear (a), Shoulder wear (b), One-sided wear 

(c), Feather Edge wear (d), Heal and Toe wear (e), Spot wear (f)  

(Yokohama Rubber Co., 2020) 

Due to inherent complexity of operations, tire performance can be measured 

depending on various internal and external factors. The factors affecting tire 

performance in a mining area can be explained in four categories: machine 

parameters, maintenance practices, operating practices, and site conditions (Carter, 

2007). Machine parameters are referred as truck design parameters such as steering 

geometry and brake heat dissipation. Maintenance practices cover both machine and 

tire maintenance activities, where tire maintenance includes the preventive 

maintenance of tire rotation, tire alignment, and tire inflation pressure. Tire rotation 

here indicates the changing positions of tires on the vehicle periodically to maximize 

the tire life by spreading the tire wear to each tire evenly. Proper inflation pressure 

mitigates tire heat levels and improves flexibility and ground contact. Over-inflation 

results in higher operating temperatures, while under-inflation results in reduced tire 

circumference, so both adversely affect tire tread wear (Meech and Parreira, 2013). 

Operating practices point to dynamic operational parameters such as work cycle, 

payload, and speed. Truck overloaded and/or traveling at high-speed lead to 

increased stress in treads, weakening bonding, and generating excessive heat in tires, 

making the tire more susceptible to failure (Carter, 2007). Site conditions imply 

(a) 

(f) (e) (d) 

(c) (b) 
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climatic factors such as temperature, rain, and snow, and haul road design and 

maintenance. A well-designed haul road can be explained by integrating safety 

berms, drainage ditches, straight sections, and super-elevated curves. Due to super-

elevation, trucks can operate at more consistent speeds generating less heat with less 

braking. In addition, maintaining road surface and drainage control are essential to 

eliminate the effects of sharp loose rocks, tire slippage, and wet/muddy roads to tire 

wear (Cat Global Mining, 2007). A detailed cause and effect diagram showing the 

factors affecting tire wear is shown in Figure 2.5. 

 

Figure 2.5 Cause and Effect Diagram Showing the Factors Affecting Tire Wear 

(Carter, 2007) 

Tire condition control is typically carried out via visual inspection by technicians or 

operators, who then decide if any tire needs further testing and/or maintenance. 

However, this procedure cannot be performed practically if there is internal damage, 

which cannot be detected through a visual inspection. In addition, based on the 

availability and allocation of the maintenance personnel at the site, inspection might 

not be conducted with required frequency to detect the tire defects before these 

defects turn to major and irreparable failures. Besides, despite that some temperature 
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and pressure monitoring systems are implemented to preventively detect tire failure, 

it is likely that they may not notice highly localized damages (Kotchon et al., 2012). 

Thus, developing a suitable maintenance plan that can mitigate and control tire 

failures, provides an early detection of failure and eventually extents the tire lifetime. 

By this way, safety and financial considerations arising from tire usage can be 

controlled and monitored effectively. 

2.4.3 Tire Management Studies in Mining 

In today’s mining industry, tire management strongly related to truck performance 

has become a critical topic since hauling operations can be interrupted to a great 

extent in cases where stochastic nature of failure modes, new tire requirement 

frequencies, and supply-chain conditions are not considered at a desired level when 

constructing a tire management policy. In this sense, some researchers have been 

performed in the literature to reveal the dynamics and factors of tire usage and 

management in mining. 

 Zhou (2007) carried out an analysis to determine the optimum tire rotation practices 

such as rotation time and rotation sequence and review the effect of some factors on 

off-the-road tires operating in two different mines. A statistical approach was applied 

to determine the optimum tire air pressure setting and the tire rotation time, while 

tire rotation sequence acronyms were generated to determine optimum rotation 

sequence. The study outputs show that when tire rotation is used, the tire life 

increases in both mines. Morad and Sattarvand (2013) developed a method using 

neural networks to estimate the tire wear rate of dump trucks operating in a copper 

mine and calculate the residual service lifetime based on the consumed tread depth. 

For the hauling operation where a total of 56 tire were captured in a database, three 

input parameters were identified which are initial tread depth, consumed tread depth, 

and the inspection time. Then, a simulation study showed that the estimated values 

represents the real values, having a correlation coefficient of 96.6%. It was 

concluded that artificial neural networks could be an effective method to estimate 

the lifetime of the tires. Meech and Parreira (2013) developed a model to investigate 
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the tire wear of an autonomous haulage truck fleet by comparing with the manual 

fleet employed in an open-pit mine. There are nine trucks in the mine operating with 

two shovels. A simulation-based model using fuzzy logic, capable of introducing the 

tire wear as a function of truck velocity and payload where both affect the tire 

temperature, was designed and implemented. Study results showed that tire 

temperature has an impact on tire wear up to 15%, considering an ambient 

temperature of 35°C. Also, an improvement by 8% was achieved on the tire wear of 

autonomous haulage fleet comparing with the manual fleet. Kagogo (2014) 

investigated the effectiveness of the tire management for trucks operating in an open-

pit mine. The study intended to evaluate the factors affecting the performance of haul 

truck tire, types of failures, and their impact on the related cost and improve the 

management system by increasing the tire life. The mine is observed to experience 

that 49% of the tires prematurely failed mainly due to cut separation. A more 

aggressive approach on the pit maintenance or identifying red zones in the site, were 

stated to be useful to improve the tire management system. Lindeque (2016) 

introduced a new tire management strategy indicating how to integrate the proposed 

improvements into the system. The study was carried out for a haul fleet covering 12 

CAT 777 and 17 Komatsu 730 haul trucks, operating in an open-pit iron mine where, 

in 2014 alone, it was reported that 61% of operating tires failed prematurely and 41% 

of them were due to wearing out. A sensitivity analyses was conducted in the study 

and the results highlighted the importance of remedial actions on tire life. At this 

point, the proposed tire management strategy improved tire life by 105% and 41% 

for CAT 777 and Komatsu 730 trucks, respectively. Qarahasanlou et al. (2017) 

developed an approach by applying a covariate-based reliability analysis to predict 

tire spare parts behavior of a dump truck fleet operating in a copper mine. The aim 

of the study was to forecast the required number of tire spare parts based on the 

reliability estimations of the component using a historical failure dataset of 11 years. 

The technical characteristics of tire, machine parameters, and the operating 

environmental conditions were introduced as covariates in the model. It was inferred 

that temperature, rainfall, and the position of the tires on the axles have an important 

impact on the operating behaviors of the tires. By both including and excluding the 
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covariates, economic order quantity and reorder point were calculated for the fleet 

covering 10 trucks, and the required number of tire spare parts were predicted for the 

following two years. The outputs pointed out that the spare part management may 

significantly be improved by re-evaluating the covariate effects. 

Although tires are extensively used and consumed in mining operations under harsh 

environmental conditions, it is observed from the literature that tire spare parts 

inventory management has not attracted enough attention previously. 

2.5 Event Simulations 

This section firstly explains the simulation concept, its classification, pros and cons, 

and the related terms to constitute a broad knowledge on the topic. In addition, the 

previous simulation studies on inventory management applied for both mining 

industry and other production industries are addressed, respectively. 

2.5.1 Simulation Concept and Classification 

Simulation is the imitation of a real-world system, which can be done by hand or on 

a computational environment. The main purpose of the simulation is to get a better 

understanding and/or improve the system, by drawing inferences about the operating 

characteristics and the performance measures of the real system (Banks et al., 2010). 

Since World War II, incorporating simulation in system-related activities has 

become indispensable for various business areas including manufacturing, project 

management, logistics, transportation, military, and health care (Altiok and 

Melamed, 2007). 

In general, a system is defined as a set of components interacting with each other and 

organized to accomplish a common purpose. In order to get a better understanding 

of a system, some basic system components need to be defined.  The entity is defined 

as the object of interest in the system, while an attribute represents a property of the 

entity. An activity indicates the period of time with a specified length. System-state 
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is defined as the description of the system condition at any time, through the 

collection of variables related to the assigned objectives. In addition, event is a term 

representing an instantaneous occurrence which may change the system-state. 

Typically, a system requires inputs processed by these internal components to 

produce some outputs. Changes occurring in the system environment, defined 

outside of the system, often affects the system dynamics. Hence, in the modeling 

phase, system boundaries and the effective environment should be defined 

attentively in accordance with the study objectives (Banks et al., 2010). 

Conceptualization of a system is shown in Figure 2.6. 

 

Figure 2.6 Conceptualization of a System (Rossetti, 2016) 

A simulation model typically consists of a set of assumptions regarding to the system 

conditions, which are constructed using symbolic, logical, and mathematical 

interactions between the system entities. After development and validation stages, 

the simulation model can be used to design new systems considering its performance 

measures and analyze the performance of existing systems under varying 

circumstances (Banks et al., 2010). 

System or simulation models can be characterized as stochastic or deterministic, 

static or dynamic, and discrete or continuous. The models that include random input 

variables are classified as stochastic models, while the deterministic models consist 

of a known set of inputs, without randomness or with negligible randomness. The 

static simulation models do not consider the effect of time on system state, while 

dynamic models define and include time as a significant factor or indicator of system 
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behavior. A system is also classified with a discrete model if the system-state 

changes at the discrete set of points in time or with a continuous model if the system-

state changes continuously in time (Rossetti, 2016). A system can be defined using 

multiple of these types. Branching of system types can be seen in Figure 2.7. 

 

Figure 2.7 General Types of Systems (Rossetti, 2016) 

Dynamic simulation, which can be classified as continuous and discrete, is 

frequently used in system modeling. In a discrete-event simulation, observations are 

collected at certain points in time called events, when any change occurs in the 

system-state. On the other hand, observations are gathered continuously through 

observation periods in a continuous simulation (Rossetti, 2016). State variables of 

discrete and continuous systems are presented in Figure 2.8. 

 

Figure 2.8 State Variables of a Continuous (a) and a Discrete (b) System (Banks et 

al., 2010) 

Simulation has many advantages and also some shortcomings/limitations. In this 

regard, advantages of a simulation model are listed below (Banks et al., 2010). 
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i. Without committing resources for their acquisition, simulation allows to test 

every aspect of a proposed change and/or correction in a system. 

ii. Simulation enables to speed up or slow down the phenomena which is 

investigated, by expanding or compressing the time. 

iii. Simulation answers how and/or why certain phenomena occur by taking a 

detailed examination of the system. 

iv. New methods, decisions, operating policies, or procedures can be examined 

practically without causing any interruption or expense in the real system. 

v. Simulation enables to diagnose the problems by giving an insight about the 

interactions between system components, their importance and impacts on 

the overall system performance. 

vi. By performing bottleneck analysis, the reasons behind the excessive delays 

in materials, information or any process can be discovered. 

vii. Simulation helps to understand how the system actually operates. 

viii. In redesigning existing systems or designing new systems, simulation helps 

to specify the requirements and answers all of the "what-if" questions. 

In addition, some shortcomings/limitations of a simulation model are mentioned as 

follows: 

i. Building a model requires experience and special training. In addition, 

models constructed for the same system by different individuals are unlikely 

to be the same despite of having some similarities. 

ii. Interpretation of the simulation outputs may be difficult in distinguishing the 

way an observation occurs caused by either randomness or interrelationships 

of the system. 

iii. Model building and analysis may be expensive and time-consuming. In 

addition, if any of the resources for model building and analysis are skimped, 

insufficient simulation models can be developed without representative 

outputs. 
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iv. Inappropriate usage of simulation can take place when an analytical solution 

is possible or preferable for the related case. 

The main steps of a simulation model are listed below (Banks et al., 2010) and the 

schematic view representing these steps is shown in Figure 2.9. 

i. Identification of the problem statement 

ii. Identification of the objectives and required dataset 

iii. Conceptualization of the model  

iv. Data collection 

v. Construction of the conceptualized model 

vi. Verification and validation of the model 
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Figure 2.9 The Schematic View Representing the Steps in Modeling (Banks et 

al., 2010) 
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2.5.2 Simulation Applications in Mining 

The first simulation model for the mining operations was developed by Rist in 1961 

and aimed to optimize the number of trains in a haulage operation of an underground 

molybdenum mine, using Monte Carlo simulation technique (Sturgul, 2001). Over 

the past few decades, various simulation and simulation-based optimization 

approaches have been developed to evaluate dispatching policies, short-term and 

long-term production scheduling, equipment selection and sizing for both open-pit 

and underground mines.  

Among the recent studies, Hashemi and Sattarvand (2015) designed a simulation 

model for loading and hauling equipment operating in an open-pit copper mine. 

Productivity assessment scenarios were implemented by modifying the number of 

trucks and the results showed that the overall mine production can be improved by 

40%. Then, a dispatching simulation model was developed to minimize truck waiting 

times and improve the production rate. An improvement in the total production by 

7.8% was achieved compared to the fixed assignment system. In addition, an ore 

blend control model was developed based on the monitoring of the excavation 

system, and a stable ore grade level was maintained. Dindarloo et al. (2015) 

investigated a truck-shovel selection and sizing problem for open-pit mines, by 

proposing a comprehensive simulation framework regarding stochasticity in the 

mining operations. This model was built including system uncertainties caused by 

material loading and haulage operations. Then, the model was computed by using 

discrete-event simulation, and the results were verified via implementing the model 

for a large open-pit mine. Que et al. (2016) presented a simulation-based 

optimization approach by utilizing discrete-event simulation to improve the 

operational performance of a continuous transport system operating in a mine. A 

case study was conducted to investigate the interactions between a shovel and the 

ground articulating pipeline mining system and maximize the system efficiency. 

Park et al. (2016) proposed a simulation model for a haulage system consisting of 

trucks and loaders employed in an underground limestone mine. The objective of the 

study was to optimize the number of trucks by simulating the dispatching system 
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with three loading points. Upadhyay and Askari-Nasab (2018) presented a 

simulation-optimization framework, which utilizes a discrete-event simulation 

model interacting with goal-programming, to develop a short-term production plan 

including uncertainties in mining operations. The model was ensured an efficient 

short-term production plan by analyzing the effect of different dispatching strategies, 

traffic congestion, and haul road designs on the mining operations. The proposed 

model was verified by applying to an iron mine with scenario analysis. Ozdemir and 

Kumral (2019) proposed a two-stage dispatching system for surface mining 

operations to maximize the equipment utilization regarding time and operational 

capacity limitations. A discrete-event simulation model was used for allocation of 

trucks in the production points by maximizing the mine throughput, whereas linear 

programming was used for simultaneously truck and shovel matching by minimizing 

the truck waiting times. The case study presented in the article showed that 7.7% 

increase in productivity can be achieved. Shishvan and Benndorf (2019) combined a 

stochastic simulation model and a deterministic optimization model to solve the job-

shop scheduling problem and the transportation problem experienced in coal mines. 

The system was computed by a discrete-event simulation. The proposed approach 

was applied to a large-scale mine, and the dispatch decisions were optimized. 

Manríquez et al. (2020) presented a simulation–optimization framework to improve 

the short-term production scheduling program of an underground mine. In each 

iteration, a mixed-integer linear programming model was utilized to construct a 

single production schedule. Then the schedule was simulated by a discrete-event 

simulation model considering the system uncertainties and reconstructed into a better 

schedule after the evaluation. A case study was conducted by implementing the 

proposed framework to a real-scale Bench and Fill mine. 

In addition, some researchers have been focused on the asset maintenance/reliability 

and its impact on production, availability, and equipment utilization. In this regard, 

Louit and Knights (2001) developed a discrete-event simulation model which 

investigates the impact of various management actions on improving the efficiency 

of the mine maintenance system. By implementing different scenarios, it was aimed 

to reduce the repair times and the unplanned failure frequencies, so to increase the 
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fleet availability. Gilardoni et al. (2016) proposed a dynamic policy, where the 

optimal preventive maintenance times continuously were updated based on the 

failure history to determine an optimal preventive maintenance policy for the 

repairable systems considering the imperfect maintenance concept. Utilizing the 

simulation model, the dynamic model performance was compared with the 

periodical preventive maintenance policy in terms of the expected cost. The model 

was applied to off-road engines of a mining company, and the study results presented 

that the dynamic model can ensure lower operating cost per unit of time. Gölbaşı and 

Demirel (2017) developed a simulation algorithm to determine the optimal 

inspection intervals of a mining machinery by using the delay-time approach. The 

maintenance mechanism was designed to minimize the expected maintenance cost 

of the system by achieving the correlations between machinery performance and the 

production. The proposed model was applied to two draglines operating in a coal 

mine, and the simulation results pointed out implementing the optimized inspection 

intervals can reduce the total maintenance costs by 5.9% and 6.2% for the given 

machines. Sembakutti et al. (2018) presented an approach to optimize the preventive 

replacement times of shovel teeth. The risk-quantification approach was developed 

based on Monte Carlo simulation and Markov chain Monte Carlo simulation to 

investigate the uncertainties of the policy and obtain confidence intervals for the 

replacement times of shovel teeth. The study results showed that a proper 

replacement policy can enable to manage the system uncertainties and to improve 

the operational efficiency. Ugurlu and Kumral (2020) presented an approach to 

evaluate the performance and the reliability of drilling machines and drill bits. The 

study intended to determine the optimum drill bit replacement time using the 

reliability analysis and simulate the drilling interactions in a discrete-event 

environment. A case study was performed for an open-pit mine operating ten rotary 

drilling machines. The simulation results revealed that the proposed approach can be 

used effectively for asset management and production scheduling. Gölbaşı and 

Ölmez Turan (2020) developed a multi-scenario discrete-event simulation algorithm 

to optimize the maintenance policy specific to the system by using the stochastic 

interactions between preventive, corrective, and opportunistic maintenance actions 
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for different inspection intervals. Two case studies were conducted for multi-system 

earthmoving operations with the optimization criteria of system availability 

maximization and single-system earthmoving operation where the optimization was 

achieved by the minimization of total maintenance cost. The results showed that a 

remarkable improvement in the system availability and the total maintenance cost 

could be achieved. 

2.5.3 Simulation Applications in the Other Production Industries 

In the past few decades, simulation has been widely used in the field of inventory 

management. Simulation is a more powerful technique than analytic models in terms 

of its representative structure of the real world and its ability to simplify the modeling 

of complex problems (Hu et al., 2018). When an inventory management is addressed 

as spare parts management, which is generally subject to the joint optimization of 

complex maintenance and inventory policies, simulation models may bring a great 

benefit to reveal the mutual and complicated interactions between maintenance and 

inventory policy dynamics. 

A simulation-based joint optimization model of spare provisioning and age-based 

preventive replacement was studied for i) single-unit systems assuming a continuous 

review ordering policy (Kabir and Al-Olayan, 1994), ii) systems with multiple parts 

assuming a continuous review ordering policy (Kabir and Al- Olayan, 1996) and iii) 

systems with multiple parts assuming a periodic review ordering policy (Kabir and 

Farrash, 1997). In addition, Ilgin and Tunali (2007) examined an integrated 

optimization of spare provisioning and preventive maintenance policies of a 

manufacturing system with a multi-component and presented a simulation-

optimization approach combined with genetic algorithms. To be able to capture all 

stochastic and dynamic characteristics of the system, the simulation model of the 

manufacturing line was employed as a fitness function evaluator. Hu et al. (2008) 

proposed a general optimization approach that integrates discrete-event simulation 

with a genetic algorithm for a spare part ordering policy under age-based 

maintenance. Wang et al. (2015) established a spare parts support probability model 
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to determine the optimum stock of spare parts. Accordingly, a comprehensive 

decision-making simulation model was developed for joint optimization of the 

equipment maintenance and spare parts ordering under condition-based maintenance 

policy, based on random equipment deterioration level and total operating cost of the 

system. The model was employed for a single equipment system under (S-1, S) 

inventory control strategy and random lead time for evaluating the cost rate, system 

availability, and the stock-out probability of spare parts. Mardin and Dekker (2016) 

established a simulation model for joint optimization of spare parts ordering and 

block replacement schedule in an identical multi-component system, where the spare 

parts ordering model was separated into a stochastic model for failure replacement 

and a deterministic model for planned block replacement, under the inventory policy 

of (s, S), and deterministic lead time. The proposed model was developed to find out 

the optimum block replacement interval, the optimum reorder point, and the 

optimum maximum stock level to minimize the total long-run average cost related 

to maintenance and inventory activities. Nguyen et al. (2017) presented an integrated 

predictive maintenance and inventory strategy for non-identical multi-component 

systems with complex structures, where both predictive maintenance and spare parts 

provisioning operations are handled jointly. By using Monte Carlo simulation 

techniques, the optimal decision parameters were determined such that the total cost 

rate is minimized considering age-dependent failure rate, constant lead time, and (R, 

s, S) inventory policy. In the model, R equals to inspection interval, and both reorder 

level (s) and inventory position up to level (S) depend on the maintenance plan. Yang 

and Kang (2017) proposed a joint optimization policy of spare parts inventory 

strategy with block preventive replacement in a system consisting of multiple 

components by applying the Monte Carlo simulation-optimization approach. By 

minimizing the total cost, their objective was to determine the optimal parameters of 

maximum inventory level and the replacement interval, under the assumption of zero 

lead time and (R, S) inventory policy where R is the preventive maintenance cycle. 

Chen et al. (2017) introduced a novel degradation prediction approach and developed 

a new failure probability estimation function considering component service time 

and degradation extent simultaneously. A simulation algorithm was designed to 
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determine the optimal replacement and spare part ordering times jointly for a single 

component, in such a way that the expected long-run cost rate is minimized under 

fixed lead time and (R, Q) inventory policy. In the policy, R is taken as decision 

variable and Q is equal to one. 

2.6 Summary and Study Motivation 

Within the scope of this study, a broad base of knowledge is constituted by 

developing a background on the related topics, and the related studies in the literature 

are comprehensively reviewed. Firstly, the inventory management concept is 

introduced and the classification of the inventory management problems is 

explained. Based on the system dynamics associated with the inventory type 

managed by the organizations, the inventory problem may be handled in three 

perspectives, which are supplier, multi-echelon, and demander. Inventory problems 

in the perspective of supplier and demander are generally considered as lot-sizing 

problems and spare parts inventory management problems, respectively. On the 

other hand, multi-echelon inventory systems are typically discussed as the 

coordination between procurement and production planning which is achieved by 

multi-echelon supply chain management. A detailed literature review covering these 

three inventory management approaches is carried out. Then, since this study focuses 

on the spare parts inventory problem, the importance of the spare parts inventory 

problem addressed in the mining industry is explained and the related studies in the 

literature are examined. Since the uncertainty in the operational level is quite high 

and the inventory should be managed carefully not to interrupt the resultant turnover 

of production, it is emphasized that spare parts inventory policies are of great 

importance. In addition, tire management concept, the structure of a tire component, 

the tire classification, working principles and tire failure types are explained since 

the tire is considered as the target component for the implementation of the inventory 

management model developed in this study. At this point, the fact that tires may be 

accounting for 20% of the total operating cost and the indirect costs may be incurred 

due to lost production time highlights the importance of the tires for sustainability of 
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the operations. Lastly, the related terms regarding simulation, the classification and 

pros and cons of the simulation are explained to constitute a broad knowledge on the 

topic. Some simulation studies in the mining and other production industries are 

examined. 

It is observed that multi-scenario simulation model for spare parts inventory 

management has not been studied in detail in spite that various studies have been 

performed on inventory management. Moreover, the spare parts inventory 

management studies in the mining industry are considerably limited despite that the 

spare parts may have a significant impact on unplanned production halts. In addition, 

tires are extensively used in mining operations under harsh environmental 

conditions, still tire spare parts inventory management has not been attracted enough 

attention in the previous studies. In fact, the studies including tire management in 

mining industry generally focus on improving the tire lifetime by analyzing the 

factors affecting tire management. In this sense, the current study intends to develop 

a multi-scenario simulation model for optimizing spare parts inventory problem 

which can be encountered in different inventory systems. In addition, a case study 

expressing the implementation of the developed model into a tire spare parts 

inventory management system is included.  
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CHAPTER 3  

3 DEVELOPMENT OF A SPARE PARTS INVENTORY  

OPTIMIZATION ALGORITHM 

3.1 Introduction 

Especially in machine-intensive sectors where the operational uncertainties are quite 

high, there is also another risk of forecasting the failure profiles of machinery 

components and the resultant spare part requirements. The demand of the spare parts 

is basically generated by corrective and/or preventive maintenance activities and 

generally characterized by intermittent, i.e. lumpy, demand. Components with 

intermittent demand have occasional demand arrivals having long time intervals in 

which no demand occurs. High variability in demand patterns leads to considerable 

difficulties in terms of inventory control. In addition, the uncertainty in lead time, 

which is the time between placing of an order and the acquisition of the product, and 

the uncertainty in maintenance plan may increase randomness and complexity in the 

problem. Thus, in this study, random lifetime, random repair time, and the random 

lead time of the spare parts will be considered when constructing the stochastic 

structure of the simulation model.  

At this point, a discrete-event simulation, which aims to determine the optimal spare 

parts inventory policy giving the cost-wise best output among all the scenarios, will 

be developed with a dynamic and stochastic structure. Using the principles of the 

inventory policies and analyzing their effects on the equipment availability, the 

developed algorithm is expected to improve the operating cost flow by minimizing 

the unexpected halts of the operations. The algorithm can be adapted to different 

inventory systems where the uncertainty in the operational level is quite high and the 

machine-intensive operating systems dominate the production that should be above 
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particular amounts for a period so that machine availability should be satisfied at a 

minimized operating cost. 

The simulation algorithm, logic and the steps will be explained in detail in Section 

3.2, where the Arena® implementation and modeling steps will be highlighted in 

Section 3.3.  

3.2 Simulation Algorithm and Effective Parameters 

As mentioned in Section 2.2, continuous and periodic inventory review policies are 

the two approaches for the inventory review used in joint systems. In this study, four 

well-known inventory policies including continuous and periodic review 

characteristics will be examined. For the continuous review policy, where the 

inventory levels are continuously checked, the (s, Q) and the (s, S) policies were 

taken into consideration. On the other hand, the (R, Q) and the (R, S) policies were 

introduced to the model as the periodic review policy, where the inventory levels are 

checked at regular time intervals. Table 3.1 summarizes those inventory policies and 

their decision variables defined in the simulation model. 

Table 3.1. Spare Parts Inventory Policies Included in the Model  

Inventory Policy Decision Variables 

(s, Q) s: Triggering inventory level 
Q: Fixed batch size 

(s, S) s: Triggering inventory level 
S: Maximum inventory level 

(R, Q) R: Review period 
Q: Fixed batch size 

(R, S) R: Review period 
S: Maximum inventory level 

 

Each inventory policy has different working mechanisms, as illustrated in Figure 3.1, 

which affect the decisions on spare parts inventory. In the (s, Q) inventory policy, 

whenever the inventory level drops below s, spare parts of fixed batch size of Q is 

ordered. Although the inventory is triggered based on the same condition, spare parts 
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are ordered up to inventory level S, in the (s, S) policy. Besides, in every R review 

period, spare parts of a fixed batch size of Q is ordered in (R, Q) policy, while spare 

parts are ordered up to inventory level S in (R, S) policy. In this study, parameters 

of each policy were addressed both individually and collectively to allow the 

simulation model to evaluate multiple scenarios for the stochastic operating 

environment of the system to be analyzed. 

Inventory decisions are triggered by maintenance actions which are basically 

preventive and/or corrective maintenance for repairable components and preventive 

and/or corrective replacement for non-repairable components. Inventory position 

changes with removing components needed in replacement actions from the 

inventory and adding components in incoming orders to the inventory. For each 

inventory policy, there is a stock-out risk that the system may encounter, arising due 

to the random characteristic of both demand and the lead time. The demands of the 

spare parts are generated depending on the need for maintenance actions covering 

non-repairable operations, which are based on uptime and downtime behaviors of 

the component. Thus, this algorithm requires introducing time between failure (TBF) 

and time to repair (TTR) characterization functions for the component(s). This 

process will be explained in Section 4.2.1. 
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Figure 3.1 Working Principles of Inventory Policies - (s, Q) policy (a), (s, S) policy 

(b), (R, Q) policy (c) and (R, S) policy (d) 

In addition, the initial inventory level, which is determined by multiplying a 

coefficient, 𝑛𝑛, specified for each policy by a certain policy parameter, is defined 

separately for each scenario. In this sense, initial inventory level is considered as 𝑛𝑛𝑛𝑛 

for (s, Q) inventory policy; 𝑛𝑛𝑛𝑛 for (s, S) inventory policy; 𝑛𝑛𝑛𝑛 for (R, Q) inventory 

policy; and 𝑛𝑛𝑛𝑛 for (R, S) inventory policy. 

The target observation period is defined as a simulation period, where the 

maintenance and inventory decisions are allowed to be given randomly and 

interactively for a period of machine operation. It is a case-specific value determined 

in a way that the characteristics of all failure modes should be represented in the 

system. Any downtime due to maintenance and/or stock-out condition is valued in 

terms of production loss, depending on the unit-time production value of the target 

system. In the model, the involvement of a spare machine in the operation is 

neglected, in case of an unexpected downtime. Moreover, component rotation, which 

can be considered under preventive maintenance actions, is also neglected in the 

model. While shortage and back-ordering are allowed in each inventory policy, it is 
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assumed that the deterioration of components, imperfect maintenance, and quantity 

discounts are not possible. Under the required order principles in the policy, it is 

assumed that an order is placed only if there is no order already placed, and the order 

quantity is received in a single delivery. In addition, inventory capacity and the 

number of maintenance crew are not considered as a constraint in the current model 

even though they can be adapted practically in future studies. 

In this regard, the flowchart of the developed algorithm is illustrated in Figure 3.2. 

There are a main module and two separate but mutually-interactive sub-modules in 

the algorithm, which are inventory cost and inventory review modules. In brief, the 

algorithm logic can be explained as follows: 

i. System management is provided in the main module. First, an inventory 

policy and a corresponding simulation scenario are assigned to the system. 

Then, machine entities are created and introduced into the algorithm. Time 

between failure (TBF) values of each failure mode and the corresponding 

repair times (TTR) spent in the maintenance activities are assigned to each 

component of each entity according to the components’ failure and repair 

characterization.  

ii. For each entity, component IDs that will be exposed to any failure, and the 

corresponding maintenance activities are decided, considering failure 

detection periods and failure mode superiorities together with the assigned 

TBF values. Then, it is decided whether the failure mode will cause a 

repairable or a non-repairable failure condition. If there is a repairable failure, 

the machine entity proceeds to the maintenance section.  

iii. If there is a non-repairable failure and the related inventory level is enough 

for replacement of the failed component(s), then the machine entity proceeds 

to the maintenance section after the inventory level (I) is updated. In the case 

of any stock-out in the inventory, the machine entity waits until a signal, 

indicating the order has arrived, is received from the inventory review sub-

module. Then, after the inventory level is updated regarding the order arrival 

depending on the lead time (𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) assigned, the machine entity proceeds to 
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the maintenance section. Then, production loss in terms of time and the 

corresponding cost value are cumulatively calculated. 

iv. The entities arriving at the maintenance section are maintained according to 

the maintenance activity assigned. The time between failure values, and the 

corresponding repair times are updated considering the applied maintenance 

type and the component ID, which failed. Due to stock-out and maintenance 

activities, production loss values are calculated as indirect operational costs 

and added to the total system cost (𝐶𝐶𝑡𝑡).  

v. The inventory cost sub-module evaluates the components in the warehouse 

and calculates the inventory holding cost at the end of each 24 hours. On the 

other hand, the inventory review sub-module checks the inventory level and 

takes action in compliance with the inventory policy available for the 

operation. Ordering cost, unit purchase cost, and inventory holding cost are 

calculated as direct operational cost items and added to the total system cost 

(𝐶𝐶𝑡𝑡). These sub-modules and their working principles will be explained in 

detail in Section 3.3. 

vi. When the active observation period (𝑡𝑡𝑙𝑙) reaches target observation period 

(𝑡𝑡𝑡𝑡), all machines are withdrawn from the system regardless of the ongoing 

processes, and all the values assigned specifically to each machine are reset. 

According to the specified inventory policy, the next simulation scenario is 

assigned to the system by converting all entities, attributes, and variables into 

their default and initial positions in the main module. If there is still an 

ongoing operation of an entity in the system by the time that the target 

observation period has reached, time interval the entity spent in operation 

until that moment is calculated and included into the related cost item. 
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Figure 3.2 Algorithm of the Simulation Model 
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3.3 Simulation Modeling in Arena 

As mentioned in Section 2.5.1, simulation models can be characterized in several 

aspects. In this study, the developed simulation model is defined as a dynamic, 

stochastic, and discrete-event model since the system includes random input 

variables and the system-state changes at a discrete set of points in time. Arena®, a 

general-purpose simulation software built upon a simulation language called 

SIMAN, allows simulating discrete, continuous and combined discrete/continuous 

systems. It has been widely used in various businesses because of ensuring flexibility 

in modeling and application of complex systems. In this regard, Arena® Software 

was utilized to develop and execute the multi-scenario inventory simulation model 

to determine the optimal spare parts inventory policy and parameters. 

In Arena®, data modules and flowchart modules are basically used to generate the 

simulation models. Modules are set of objects storing the information required to 

simulate a system. Flowchart modules describe the simulation process, while data 

modules define the characteristics of process elements. Among all the data and 

flowchart modules, the fundamental ones used in the development of the inventory 

simulation model are described in Table 3.2 and Table 3.3, respectively.  

Table 3.2. Data Modules and Descriptions in Arena®  

Data Modules Description 

Entity Defines dynamic objects which are active in the system throughout the 
simulation. 

Attribute Defines individual characteristics of the entities. 
Variable Defines overall system specifications regardless of the entity attributes. 

Expression Defines mathematical expressions which will be re-evaluated at every new call 
in the model. 

Queue Defines waiting point for the entities due to any constraint on the resources. 
Resource Defines resources utilized by the entities, such as equipment and people.  
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Table 3.3 Flowchart Modules and Descriptions in Arena®  

Flowchart Modules Description 

Create 
 

Creates entities used in the model. 

Dispose 
 
Destroys the entities entering the module. 

Assign 
 

Assigns any valid expression to a specified attribute or 
variable. 

Process 

 

Defines a particular action, which includes seize, delay, and 
release processes. 

Decide 
 

Directs flow of entities depending on specified conditions. 

Batch 

 

Forms a temporary or permanent entity set. 

Separate 

 

Duplicates incoming entity or splits entities from an existing 
temporary entity set. 

Record 

 

Records statistics specified in the model. 

Read/Write 
 

Reads data from an input file and writes data on an output file. 

Hold 

 

Keeps entities in the preceding queue until a prespecified 
signal received. 

Signal 

 

Sends a prespecified signal when entity enters the module. 

Station 
 

Represents the entrance point of a station which entities are 
transferred. 

Route 
 

Transfers the entities to the specified station. 

 

In the inventory simulation model, target systems whose components are exposed to 

failures are introduced as the main entities. There are also two different entity types 
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defined in the model: i) a worker who reviews the inventory level based on the 

inventory policy, and ii) another worker who calculates the daily inventory holding 

cost according to the inventory level. Moreover, TBF and TTR expressions are 

defined initially and their random values are assigned to attributes defined for each 

component of each machine in the model. Since attributes are unique for each entity, 

machine IDs, and production loss times are also introduced as attributes, in addition 

to the assigned TBF and TTR values. Besides, policy type, scenario number, policy 

parameters, inventory level, inventory capacity, lead time, total production loss time, 

the target observation period, and all cost items are defined as system variables. 

Maintenance crew is the only resource in the model. In the model, three types of 

queues are defined where the machines wait for an order to arrive and the workers 

wait for the next setup in each sub-module.  

The main module, where the system management is achieved by operating the 

inventory and maintenance decisions for the assigned properties of machines, can be 

examined in four parts. The first part of the main module, illustrated in Figure 3.3, 

covers creating entities, assigning system properties to these entities, and giving all 

the decisions related to inventory and maintenance parameters. First, an inventory 

policy and a corresponding simulation scenario are assigned to the system. Then, the 

simulation starts with creating and numbering the entities. The time between failures 

(TBF), and time to repair (TTR) values of each failure mode are assigned to each 

component of each machine, according to the components’ failure and repair 

characterizations. The algorithm checks whether the target observation period for the 

current scenario will expire following the first failure. In that case, the entities are 

sent to the last part of the main module, where the setup for the new scenario takes 

place. Otherwise, the failure mode and component ID of the first failure to be 

experienced are identified, then the corresponding maintenance activity is assigned 

to the defective component. If there are multiple failures expected to occur at the 

same time, maintenance operations are scheduled as if a different maintenance 

activity will be performed for each failure. Then, maintenance plan is updated by 

considering the failure mode superiorities for the maintenance activities scheduled 

to be performed. Superiority is a condition observed when a maintenance work being 
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performed also eliminates the other failure for the same component. For instance, 

replacement of a tire due to impact damage eliminates the cumulative effect of 

irregular wear available on the component. For this case, failure mode of impact 

damage is superior to the failure mode of irregular wear. If a superiority condition 

exists in maintenance activities, then maintenance plans are updated. Considering 

the maintenance plan updated, repair times for each active maintenance work are 

identified. Among these repair times, the one with the highest value is defined as the 

repair time of the current maintenance plan of the machine.  

 

Figure 3.3. Main Module – Part 1 

Subsequently, the maintenance plan is updated again considering the failure mode 

detection periods. If a failure has not yet occurred but is within a failure detection 

period, during which deterioration can be observed, and if its potential repair time is 

lower than the repair time of the current maintenance plan multiplied by a certain 

coefficient, then a maintenance activity is assigned preventively for that failure. The 

coefficient here is decided administratively. At this point, if the coefficient is taken 

as one, deteriorated but non-failed component cannot be maintained preventively if 

its expected maintenance duration is more than the active maintenance duration. This 

number can be given higher than one if there is any tolerance time additional to the 
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active maintenance duration. Thereafter, considering the failure mode superiorities 

once again, the maintenance plan is updated one last time and it takes its final form. 

Finally, the number of components that need replacement is determined for each 

machine and the machines are transferred to the inventory section.  

The second part of the main module, illustrated in Figure 3.4, operates the inventory 

decisions assigned to each machine. The machines that do not need a component 

replacement bypass the inventory section and proceed directly to the maintenance 

section. If there is a non-repairable failure that requires component replacement, 

inventory level is checked to find out whether there is sufficient inventory or not. If 

there is enough number of spare parts available, the inventory level is updated 

regarding the number of components removed from the inventory for maintenance. 

Then the machine proceeds to the maintenance section. In the case of any stock-out 

in the inventory, a signal is sent to the inventory review sub-module forcing the 

inventory to place an order regardless of the working principles of the policy. 

Activation of this signal requires that there is no order already being waited to arrive. 

Then, the machine waits in a queue until another signal indicating the order has 

arrived is received from the inventory review sub-module. Based upon the order 

arrival, the machines are released one by one from the queue, where they are sorted 

according to the required component numbers from the lowest to highest. The 

inventory level is updated considering the number of components removed from the 

inventory. If the component requirement of all the machines waiting in the queue 

cannot be met with this fresh lot-order, another signal is sent to the inventory review 

sub-module. The machines whose spare parts requirements are not met continue to 

wait in the queue. The algorithm checks whether the target observation period has 

expired after a machine is released from the queue. In that case, the machines are 

sent to the last section of the main module, where the setup for the new scenario 

takes place. Otherwise, for the machines released from the queue, the entrance and 

exit times are recorded, and the time spent in the queue is calculated in terms of 

production loss. Considering that the downtime events caused by a stock-out 

condition may overlap with the planned administrative breaks such as shift and lunch 

breaks, these downtimes are deducted from the stock-out downtimes to reveal the 
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pure stock-out effect. Hence, production loss cost is calculated as an indirect 

operational cost item and added to the total system cost. If there is a maintenance 

scheduled for a repairable failure, it is assumed that this maintenance work is 

initiated during the production loss period of the machine spent in the queue. 

Therefore, repair times assigned for these maintenance activities, which are already 

started, are updated. 

 

Figure 3.4 Main Module – Part 2 

The third part of the main module, illustrated in Figure 3.5, operates the maintenance 

decisions assigned to each machine. Among the repair times assigned for the active 

maintenance works, the one with the highest value is defined as the repair time of 

the current maintenance plan for the machine. The algorithm checks whether the 

target observation period will expire after the maintenance activity. In that case, the 

machines are transferred to the last section of the main module, where the setup for 

the new scenario takes place. Otherwise, the maintenance plan is achieved, and the 

production interruption during maintenance activities is calculated as production loss 

time. Since the maintenance downtimes may overlap with the planned administrative 
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breaks, i.e. shift and lunch breaks, these downtimes are reduced by considering the 

administrative availability of the system. Thus, production loss cost is calculated and 

added to the total system cost as an indirect operational cost item. Thereafter, time 

between failure values and the corresponding repair times are updated considering 

both the active maintenance works and the maintenance works activated due to 

failure mode superiority. Finally, after the related system variables and attributes are 

reset, machines are transferred to the first section of the main module where the 

component ID that is expected to experience the incoming failure, and its failure 

modes are identified. 

 

Figure 3.5 Main Module – Part 3 

The last part of the main module, illustrated in Figure 3.6, operates the setup 

decisions taken based on the target observation period. When the target observation 

period defined for a scenario is over, all machines are withdrawn from the system 

regardless of the ongoing processes, with a signal to the main module. If there is a 

machine still being on hold for an order to arrive when the target observation period 

has expired, this waiting time is calculated and included in the production loss. 

Similarly, if there is an ongoing maintenance activity when the target observation 

period expires, the time between the maintenance start time and the last observation 

time is calculated and included in the production loss. Then, all system variables and 

attributes of entities are reset. According to the specified inventory policy, the next 

simulation scenario is assigned to the system, and the target observation period is re-

started for the new scenario. Besides, the simulation is replicated until the initial bias 

is eliminated where a balance point is reached. At the end of each simulation 
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replication, all the cost items calculated for each scenario are recorded as an output 

data file. 

 

Figure 3.6 Main Module – Part 4 

The inventory cost sub-module, illustrated in Figure 3.7, serves for evaluating the 

cost of the inventory kept. At the end of each day, the inventory records of the 

component is kept by a worker. Based on the number of components kept in the 

inventory, the inventory holding cost is calculated as a direct operational cost item 

and added to the total system cost. When the target observation period has expired, 

it is waited until the setup of the new scenario is completed. 

 

Figure 3.7 Inventory Cost Sub-Module 

The inventory review sub-module, where the inventory reviews and the ordering 

operations are performed based on the working principles of the active inventory 

policy and corresponding simulation scenario, can be examined in three parts. The 

first part of this sub-module, illustrated in Figure 3.8, starts with creating worker 

entities that will perform the reviewing job and the ordering decisions on a 

continuous or a periodic basis, depending on the active reviewing application under 

the inventory policy. Then, these entities are sent to one of the four inventory policy 

sections considering the available inventory policy. 
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Figure 3.8 Inventory Review Sub-Module – Part 1 

The second part of the inventory review sub-module, illustrated in Figure 3.9, 

operates the inventory review and ordering decisions based on the working principles 

of the continuous review inventory policies, (s, Q) and (s, S) policies. The inventory 

level is continuously reviewed depending on a scenario-specific reorder level that 

triggers the system to place an order. When the inventory level drops below the 

reorder level s, an order is placed immediately, unless there is an order already being 

waited to arrive. In addition, receiving a signal from the main module due to 

machines having a stock-out condition also triggers the system to place an order. 

Once the ordering process is initiated, the order quantity is determined based on the 

active inventory policy and the inventory capacity. If the active inventory policy is 

the (s, Q) policy, the spare parts of a fixed batch size of Q is ordered. On the other 

hand, if the (s, S) policy is active, the spare parts are ordered up to inventory level S. 

Herein, it is ensured that the order quantity placed does not exceed the inventory 

capacity. Then, the ordering and unit purchase costs are calculated as direct 

operational cost items and added to the total system cost. Thereafter, the lead time 

of the order in process is assigned to the system. Lead time is considered as the time 

between creation of a need for placing an order and acquisition of the product. Once 

an order is received, the inventory level is updated regarding the number of 

components added to the inventory. Then, a signal indicating that the order has 

arrived is sent to the main module to release the machines from the inventory waiting 

queue. When the target observation period has expired, it is waited until the setup of 
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the new scenario is completed. Then, the same operations continue depending on the 

inventory policy parameters introduced for the new scenario. 

 

Figure 3.9 Inventory Review Sub-Module – Part 2 

The third part of the inventory review sub-module, illustrated in Figure 3.10, 

operates the inventory review and ordering decisions based on the working principles 

of the periodic review inventory policies, (R, Q) and (R, S) policies. The inventory 

level is reviewed at regular time intervals depending on the scenario-specific review 

period that triggers the system to place an order. When the inventory review period 

is arrived, an order is placed immediately, unless there is an order already being 

waited to arrive. In addition, receiving a signal from the main module due to any 

stock-out condition also triggers the system to place an order, regardless of the 

review period intervals. These types of orders out of the regular review period in 

stock-out periods lead to a re-arrangement in the policy. These policies can be called 

induced periodic review policies. Once the ordering process is initiated, the order 

quantity is determined based on the active inventory policy and the inventory 

capacity. If the active inventory policy is the (R, Q) policy, the spare parts of fixed 

batch size of Q is ordered. If the (R, S) policy is available, then the spare parts are 

ordered up to inventory level S. Again, it is ensured that the order quantity placed 

does not exceed the inventory capacity. After this point on, system decisions 

regarding cost calculation, lead time assignment, and inventory level update are 

made by following the same track as the second part of the inventory review sub-

module. When the target observation period has expired, it is waited until the setup 

of the new scenario is completed. If the last review period scheduled in the previous 

scenario is extended to the new scenario, it is eliminated. At this point, a new review 
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period adjustment is ensured for the new scenario. Then, the same operations 

continue depending on the inventory policy parameters defined for the new scenario. 

 

Figure 3.10 Inventory Review Sub-Module – Part 3 
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CHAPTER 4  

4 ALGORITHM IMPLEMENTATION FOR THE INVENTORY  

POLICY OPTIMIZATION OF HAUL TRUCK TIRES 

4.1 Introduction 

In this section, the implementation of the developed simulation model to a tire spare 

parts inventory system of a truck fleet is represented. On this basis, a real dataset 

acquired from a surface coal mine and some expert opinions are processed and used 

as input in the algorithm to reveal the applicability and capability of the model. Input 

dataset and optimization results will be discussed in detail in Section 4.2. 

4.2 Case Study 

The proposed discrete-event simulation model was applied to the tires of a truck fleet 

operating in an open-pit coal mine in Turkey. An identical truck fleet consists of 

seven trucks having six tires each, as illustrated in Figure 4.1. The dataset covering 

objective and subjective maintenance data of trucks was provided by the mining 

company. The inputs derived from the provided dataset, conducted surveys with the 

experts, and the related machinery catalogues are explained in Section 4.2.1. Finally, 

the results of the implementation are discussed in Section 4.2.2.  

 

Figure 4.1 Schematic View of Front (a) and Rear (b) Tires of a Truck 
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4.2.1 Input Dataset of the Algorithm 

The quantitative dataset provided by the company consists of maintenance records 

on truck breakdowns regarding failure occurrence times, repair times, and their brief 

explanations for a period between 2015 and 2019. The time between failure 

occurrences include active operating time as well as operational and administrative 

breaks, such as refueling times, shift changes, and lunch breaks available for the 

trucks employed in three shifts. There are seven 177 tonne CAT 789C, fifteen 78 

tonne Komatsu HD785-1 and twelve 91 tonne Komatsu HD785-7 dump truck 

records in the dataset. Moreover, maintenance records hold 4,154 and 3,450 different 

maintenance activities for the CAT and Komatsu trucks, respectively. In the mining 

industry, tires are frequently used as spare parts in material loading, material hauling, 

and auxiliary operations under harsh environmental conditions. As mentioned in 

Section 2.4.1, tires have one of the most noticeable impacts on mining haulage 

economics as they can account for up to 20% of the operating costs (Meech and 

Parreira, 2013). Therefore, tires are considered as the target component for the 

implementation of the inventory management model developed in this study. Due to 

a lack of sufficient amount of data and explanation in the tire maintenance records 

of Komatsu dump trucks, the fleet of CAT dump trucks is addressed as the target 

entity in the case study. Therefore, the fleet included in the model is composed of 

seven identical trucks having six tires each. CAT 789C trucks are operated with 

standard 37.00-R57 tires (Caterpillar, 2007), an important element of the inventory 

management problem since they are capital intensive and may have a great influence 

on the total operating cost of the haulage operation. The earthmover tires used in this 

study are radial type tires having 37 in. section width and 57 in. rim diameter 

(Goodyear, 2016). Typical dimension designations for earthmover tires are 

illustrated in Figure 4.2. 

Before processing of the maintenance data, the human errors covering typing errors 

and duplicated records were removed from the dataset. Then, considering the failure 

descriptions in the dataset and the literature review conducted in Section 2.4, tire 
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breakdowns were divided into sub-categories representing four different failure 

modes, which are deflation, cuts and punctures, impact damage, and irregular wear. 

  

Figure 4.2 General Size Designations for Earthmover Tires 

Each failure mode was assigned to different work packages of maintenance 

activities, established considering the nature of the failure, machinery usage, and the 

financial risk appetite of the company. For instance, deflation, and cuts and punctures 

failure modes can be repaired correctively, while the other failure modes require 

replacement. In this regard, failure modes to be analyzed in this study, their 

descriptions and typical maintenance actions can be investigated in Table 4.1.  

Table 4.1 Failure Modes and Their Descriptions 

Failure Mode Code Failure Description Maintenance Type 

Deflation F01 Air leaking at the valve core, the 
valve stem or the bead 

Corrective 
Maintenance 

Cuts and 
Punctures F02 Piercing through the tread area due 

to sharp objects 

Corrective 
Maintenance 

Impact Damage F03 Disintegrated tire sidewalls, or 
delaminated tread and plies 

Corrective 
Replacement 

Irregular Wear F04 Worn out tire surface Preventive 
Replacement 
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Four main failure modes that requires three different maintenance actions are 

detected as shown in Table 4.1. Corrective maintenance refers to that failed 

components can be recovered with a repairing activity, without requiring 

replacement with a new component from inventory. On the other hand, corrective 

replacement is applied just after failure for the failures where replacing with a new 

component is the only option and the failed component is not safe or practical to be 

repaired. Last, preventive replacement is applied before any failure if there is any 

indicator(s) showing that operating the related component is not safe. Here, irregular 

wear failure mode will be estimated using suggested formulations where the other 

failure modes will be characterized using the dataset. Hence, the failure and repair 

data were assigned to each related failure mode, which are F01, F02 and F03. In this 

sense, the total maintenance numbers, and the total maintenance durations of each 

failure mode in the dataset covering a period between 2015 and 2019 are shown in 

Figure 4.3. 

 

Figure 4.3 Maintenance Numbers and Durations in the Data of F01, F02 and F03 

In a 5-year period, the total numbers of failures are observed as 113 for F01, 35 for 

F02, and 26 for F03. In addition, the total system halts due to maintenance activities 

are observed as 555.75, 346.75, and 307 hours for the F01, F02 and F03 failure 

modes, respectively. It is revealed that F03 requiring a component replacement in 

case of a failure has the lowest occurrence frequency, and total maintenance duration 
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compared to the other two failure modes, for which corrective maintenance is 

applied. 

First, the clustered data is pre-processed to eliminate the outlier values, and evaluate 

time-dependency, and autocorrelation. Then, each data group is analyzed to 

determine their representative best-fit distributions or regression equations so that 

they can be introduced to the algorithm for generating random uptime and downtime 

values. At this point, allocation and clustering data into groups to be analyzed is 

performed considering failure modes without considering truck and tire IDs since 

they are assumed to be identical. Once any random failure occurrence is generated, 

which truck and tire ID will expose to that failure is determined randomly with 

uniform (homogeneous behavior) distribution. In this sense, it is assumed that each 

tire of each individual truck displays the same failure behavior for a certain failure 

mode, in case that there is no change in maintenance department work intensity in a 

5-year period. 

In this regard, lifetime and repair time datasets were allocated to the failure modes 

of the fleet. These datasets were primarily subjected to statistical tests to detect 

outlier occurrences, independency, autocorrelation, and trend since a non-stationary 

time series in the analysis affects the uptime/downtime characterization method.  

Outliers are extreme and inconsistently very high or very low values, compared to 

the general behavior of the related dataset. Therefore, elimination of the outlier 

values is essential to prevent unfavorable deviations that may be encountered in 

analysis results (Rossi, 2010). Box plots, which are non-parametric tests, indicate the 

minimum and maximum data values, as well as the 25th (𝑛𝑛1), 50th (median) and 75th 

(𝑛𝑛3) percentile points in the data distribution. The area between 𝑛𝑛1 and 𝑛𝑛3 values of 

these plots is called the interquartile range (IQR), and any data having a value less 

than 𝑛𝑛1 − 1.5𝑥𝑥𝑥𝑥𝑛𝑛𝑥𝑥 or more than 𝑛𝑛3 + 1.5𝑥𝑥𝑥𝑥𝑛𝑛𝑥𝑥 is generally labelled as outlier. In 

this sense, box plots were utilized to detect outlier occurrences in lifetime and repair 

time datasets for each failure mode of the fleet. Hence, the outliers observed in the 

lifetime dataset of F01, F02, and F03 and labeled as dot symbols can be observed in 

Figure 4.4. 
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Figure 4.4 Box Plot for Outlier Detection in the Lifetime Data of F01, F02 and F03 

After detecting and eliminating the outlier values from the datasets, the Pearson 

correlation test, and Lag-1 scatter plot were examined to analyze the correlation 

between the sequential data values. In this sense, the Lag-1 scatter plots were 

generated using 𝑖𝑖𝑡𝑡ℎ and (𝑖𝑖 − 1)𝑡𝑡ℎ values of the lifetime and repair time datasets for 

each failure mode of the fleet. The plots, following any particular pattern, can be 

qualitatively interpreted as an indicator of possible data dependency. Moreover, the 

Pearson correlation tests where the data typically represents a strong correlation if 

the coefficient value lies between ± 0.50 and ± 1 were utilized to verify these 

qualitative observations. As an example, Figure 4.5 shows the Lag-1scatter plot and 

Pearson correlation test results for the lifetime dataset of F01.  

 

Figure 4.5 Data Independency Test for the Lifetime Data of F01 
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The illustrations for the lifetime datasets of F02 and F03 can be viewed in Appendix 

A. As a result of the independency tests conducted on all lifetime datasets, no data 

dependency was detected. 

Following the independency tests, the stationarity of the datasets was tested for 

uptime and downtime data behavior in time. Lifetime datasets having a trend 

behavior indicate that the components are subject to an observable increase or 

decrease in time between failures data in time. Such a deduction is valid for 

repairable failure modes, since non-repairable failure modes do not induce aging or 

improvement conditions in time intervals. If a failure mode is non-repairable or 

repairable with non-trend behavior, the datasets representing such failure modes are 

considered as stationary and not subjected to time-dependency. For the stationary 

datasets, descriptive parameters can be estimated using best-fit distributions. On the 

other hand, a stochastic process, which can measure increasing/decreasing lifetime 

trend in the sequential data, can be utilized in parameter estimations, for the non-

stationary datasets (Gölbaşı, 2015). As observed in Table 4.1, the third failure mode 

(F03) is the only non-repairable failure mode. Therefore, its lifetime dataset is 

already considered stationary. In this regard, the trend behaviors of the lifetime 

datasets were analyzed only for the repairable failure modes (F01 and F02) by 

utilizing some quantitative hypothesis tests.  

The quantitative hypothesis tests used in this study are Crow-AMSAA, Laplace, 

Lewis-Robinson, and pairwise comparison nonparametric test (PCNT). 

Crow/AMSAA and Laplace methods check if the data are suitable for the 

homogenous Poisson process, where Lewis-Robinson and PCNT methods test if the 

data can be fitted in an ordinary renewal process. In the ordinary renewal process, it 

is assumed that a failed component is restored to its original state since the 

maintenance is performed perfectly, and so the aging problem of the component is 

neglected. Basically, the ordinary renewal process considers homogeneous Poisson 

process if the data having a constant failure rate fits into exponential distribution 

(Gölbaşı, 2015; Høyland and Rausand, 2004). Hence, hypothesis tests can provide 

robust evidence of whether a time-series follow any trend in time or not.  
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Crow-AMSAA points to a trend behavior in a dataset if 2𝑁𝑁/�̂�𝛽 < 𝜒𝜒2𝑁𝑁,1−𝛼𝛼/2
2  

or 2𝑁𝑁/�̂�𝛽 > 𝜒𝜒2𝑁𝑁,𝛼𝛼/2
2 . �̂�𝛽 is the expected shape parameter which can be calculated using 

Equation 4.1, where 𝑁𝑁 is the total failure number, 𝑇𝑇𝑖𝑖 is the arrival time of ith failure, 

1 − 𝛼𝛼 is a confidence interval, and 𝜒𝜒𝑙𝑙,𝑏𝑏
2  is the score of chi-square distribution 

(Gölbaşı, 2015; Wang and Coit, 2005).  

�̂�𝛽 = 𝑁𝑁

∑ ln�𝑇𝑇𝑁𝑁𝑇𝑇𝑖𝑖
� 𝑁𝑁−1

𝑖𝑖=1
             (4.1) 

Moreover, in Laplace test, data trend is accepted if 𝑈𝑈𝐿𝐿 > 𝑧𝑧𝛼𝛼/2 or 𝑈𝑈𝐿𝐿 < −𝑧𝑧𝛼𝛼/2. 𝑈𝑈𝐿𝐿 is 

the test statistics and can be calculated using Equation 4.2, where again 𝑁𝑁 is the total 

failure number, and 𝑇𝑇𝑖𝑖 is the arrival time of ith failure (Gölbaşı, 2015; Wang and Coit, 

2005). 

𝑈𝑈𝐿𝐿 =
∑ 𝑇𝑇𝑖𝑖−(𝑁𝑁−1)𝑇𝑇𝑁𝑁2
𝑁𝑁−1
𝑖𝑖=1

𝑇𝑇𝑁𝑁�
𝑁𝑁−1
12

          (4.2) 

Besides, Lewis-Robinson test points out a trend behavior if 𝑈𝑈𝐿𝐿𝐿𝐿 > 𝑧𝑧𝛼𝛼/2 or 𝑈𝑈𝐿𝐿𝐿𝐿 <

−𝑧𝑧𝛼𝛼/2. 𝑈𝑈𝐿𝐿𝐿𝐿 is the test statistics and can be calculated using Equation 4.3, where 

𝐶𝐶𝐶𝐶[𝑋𝑋] is the coefficient of variance, and 𝑋𝑋 is the time between failure data 

(Gölbaşı, 2015; Wang and Coit, 2005).  

𝑈𝑈𝐿𝐿𝐿𝐿 = 𝑈𝑈𝐿𝐿
𝐶𝐶𝐶𝐶[𝑋𝑋]

             (4.3) 

Finally, pairwise comparison nonparametric test PCNT accepts a trend behavior in a 

dataset if 𝑈𝑈𝑝𝑝 > 𝑧𝑧𝛼𝛼/2 or 𝑈𝑈𝑝𝑝 < −𝑧𝑧𝛼𝛼/2. 𝑈𝑈𝑝𝑝 is the test statistics and can be calculated 

using Equation 4.4, where 𝑁𝑁 is the total failure number, and 𝑈𝑈 is the number of 

instances in which  𝑋𝑋𝑗𝑗 > 𝑋𝑋𝑖𝑖 for 𝑗𝑗 < 𝑖𝑖 (Gölbaşı, 2015; Wang and Coit, 2005).  

𝑈𝑈𝑝𝑝 = 𝑈𝑈−𝑁𝑁(𝑁𝑁−1)/4

�(2𝑁𝑁+5)(𝑁𝑁−1)𝑁𝑁
72

            (4.4) 
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In the light of this information, the trend behaviors of lifetime datasets for F01 and 

F02 failure modes of the fleet were analyzed using quantitative hypothesis trend tests 

with a 95% confidence interval. The test results for the lifetime datasets are shown 

in Table 4.2. Hence, it was observed that each failure mode has a stationary lifetime 

dataset with non-trend behaviors. 

Table 4.2 Trend Analysis for the Lifetime Data of F01 and F02 

Test Name Test Statistics F01 F02 
Crow-AMSAA 2𝑁𝑁/�̂�𝛽 209.8 55.8 
 𝜒𝜒2𝑁𝑁,1−𝛼𝛼/2

2  171.8 43.8 
 𝜒𝜒2𝑁𝑁,𝛼𝛼/2

2  252.0 88.0 
 Decision No Trend No Trend 
Laplace 𝑈𝑈𝐿𝐿 0.05 0.07 
 𝑧𝑧𝛼𝛼/2 1.96 1.96 
 Decision No Trend No Trend 
Lewis-Robinson 𝑈𝑈𝐿𝐿𝐿𝐿 0.05 0.11 
 𝑧𝑧𝛼𝛼/2 1.96 1.96 
 Decision No Trend No Trend 
PCNT 𝑈𝑈𝑝𝑝 0.56 -0.19 
 𝑧𝑧𝛼𝛼/2 1.96 1.96 
  Decision No Trend No Trend 

 

Non-trend lifetime data behavior indicates that failure modes exhibit almost 

predictable lifetime values within a specific range, without any time effect. 

Moreover, it was assumed that each tire of each individual truck displays a similar 

failure behavior for a certain failure mode. This assumption indicates that the 

identical fleet includes similar-behavior trucks, having similar-behavior tires, which 

can be represented by same uptime and downtime characterizations. Thus, the 

datasets were fitted into best distributions to determine the uptime characterizations, 

using the records of whole fleet jointly for each failure mode. Parametric values of 

lifetime functions for each failure mode are represented in Table 4.3 and 

corresponding probability density functions are shown in Figure 4.6.  

 



 

70 
 

 

Table 4.3 Lifetime Parameters of F01, F02 and F03 

Code Model Parameter P-value 

F01 Weibull-2P β = 0.84; η = 1437 0.241 

F02 Lognormal-2P µ' = 8.1; σ' = 1.13  0.582 

F03 Weibull-2P β = 1; η = 10025 >0.25 

 

 

Figure 4.6 Probability Density Functions of Lifetime Dataset for F01, F02 and F03 

Considering the statistics in Table 4.3, it is observed that time between failure (TBF) 

characterization can be qualified using Weibull distribution for the first and the third 

failure mode, while it can be identified using lognormal distribution for the second 

failure mode.  

In addition, since there was no certain distinction regarding the failed tire position in 

the maintenance records, the time between failure (TBF) assignments in the model 

were slightly modified to be compatible with the dataset. In this regard, random 

lifetime values regarding each failure mode will be generated first, using the lifetime 

distribution parameters in Table 4.3. Then, a specific tire of a specific truck will be 

determined randomly using uniform distribution for assigning the incoming failure 
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modes to a certain component. Uniform distribution here shows that each tire in each 

truck has same probability to be exposed to the failure modes. This process is 

performed in the same manner for all three failure modes.  

After the lifetime parameters were determined, the repair time datasets of each 

failure mode were processed to detect outlier occurrences, independency, 

autocorrelation and trend. After the detection and elimination of the outlier values in 

the datasets, the Pearson correlation test, and Lag-1 scatter plot were analyzed. The 

independency tests on the repair time datasets of each failure mode show no data 

dependency. Then, the trend behaviors of the repair time datasets were examined by 

using quantitative hypothesis tests with a 95% confidence interval. Table 4.4 

represents the results of the hypothesis tests. Since the third and the fourth failure 

modes (F03 and F04) requires a component replacement in case of a failure, TTR of 

F04 was assumed to be same with F03, since there is lack of enough data for F04 in 

maintenance records. 

Table 4.4 Trend Analysis for the Repair Time Data of F01, F02, F03 and F04 

Test Name Test Statistics F01 F02 F03 F04 
Crow-AMSAA 2𝑁𝑁/�̂�𝛽 377.2 82.1 44.0 44.0 
 𝜒𝜒2𝑁𝑁,1−𝛼𝛼/2

2  180.8 50.4 32.4 32.4 
 𝜒𝜒2𝑁𝑁,𝛼𝛼/2

2  263.0 97.4 71.4 71.4 
 Decision Trend No Trend No Trend No Trend 
Laplace 𝑈𝑈𝐿𝐿 -6.31 -1.14 -0.14 -0.14 
 𝑧𝑧𝛼𝛼/2 1.96 1.96 1.96 1.96 
 Decision Trend No Trend No Trend No Trend 
Lewis-Robinson 𝑈𝑈𝐿𝐿𝐿𝐿 -5.75 -2.12 -0.27 -0.27 
 𝑧𝑧𝛼𝛼/2 1.96 1.96 1.96 1.96 
 Decision Trend Trend No Trend No Trend 
PCNT 𝑈𝑈𝑝𝑝 2.72 1.53 0.51 0.51 
 𝑧𝑧𝛼𝛼/2 1.96 1.96 1.96 1.96 
  Decision Trend No Trend No Trend No Trend 
 

Repair time characteristic parameters for the failure mode datasets showing non-

trend behavior were estimated via best-fit distributions. On the other hand, F01 

showing a trend behavior were processed via a stochastic process called General 
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Renewal process (GRP) following the assumption of an intervention of maintenance 

only influence on the time since the last intervention. Observing a trend behavior in 

the repair time dataset can be caused by having an incapable maintenance crew, 

employing inadequate number of maintenance crew, improper allocation of the crew 

into the work packages, and/or increased failure frequency in the operating area. 

Accordingly, parametric values of repair time functions for each failure mode are 

represented in Table 4.5 and corresponding probability density functions are shown 

in Figure 4.7. 

Table 4.5 Repair Time Parameters of F01, F02, F03 and F04 

Code Model Parameters P-value 

F01 GRP β = 0.5; η = 0.16; RF = 0.76 Not iid* 

F02 Weibull-2P β = 2; η = 10.8 >0.25 

F03 Lognormal-2P µ' = 2.15; σ' = 0.5 0.877 

F04 Lognormal-2P µ' = 2.15; σ' = 0.5 0.877 

* Not identically and independently distributed 

   

 

Figure 4.7 Probability Density Functions of Repair Time Dataset for F01, F02, F03 

and F04 
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Considering the statistics in Table 4.5, it is observed that time to repair (TTR) 

characterization can be identified using Weibull distribution for F02, while it can be 

qualified using lognormal distribution for F03 and F04. On the other hand, General 

Renewal Process (GRP) was performed for F01 so that the process allows 

determining Weibull-2P parameters.  

GRP is a stochastic process utilizing consecutive event points of a system in a time 

period, without considering event frequency used in best-fit distributions. In 

addition, the ordinary renewal and non-homogenous Poisson processes are also 

commonly used stochastic methods. In general, the ordinary renewal process 

assumes that the system is restored to as good as new condition by achieving a perfect 

repair, while non-homogenous Poisson process considers that the system is restored 

to as bad as old condition by performing a minimal repair. On the other hand, GRP 

assumes that the system can be restored to a condition between as good as new and 

as bad as old. This process utilizes the Kijima’s imperfect maintenance parameter 

using the degree of repair (q) in a range between 0 and 1, or the restoration factor 

(RF), where RF = 1-q. Thus, if the restoration factor equals to 0 or 1, General 

Renewal Process turns to non-homogenous Poisson process or ordinary renewal 

process, respectively. Besides, General Renewal Process is qualified using the 

parameters of Weibull-2P distribution (Gölbaşı, 2015). 

In addition, an auxiliary simulation model was computed to obtain the time between 

tire wear occurrences for the lifetime characterization of F04, since it is required as 

an input in the model. This auxiliary model was built up based on a study conducted 

by Kına (2021) where a truck dispatching algorithm was developed to reveal the 

dynamic interactions between truck and road to calculate fuel consumption and mine 

production per period. In the study, different truck characteristics such as truck 

models, payload capacities, and speed profiles as well as road characteristics such as 

lengths, grades, and surface conditions were introduced to a discrete-event 

simulation model (Kına, 2021).  

Stochastic processes in the truck dispatching model, related to speed profiles, truck 

cycle times, and payloads, were converted to a deterministic state considering the 
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operational specifications of CAT 789C used in the inventory management model. 

In addition, the original model structure estimating fuel consumption and mine 

production was modified to be able to forecast the tire service life, i.e. the time 

between the tire wear occurrences. Within its tire life estimating system, Goodyear 

Tire and Rubber Co. has provided the average tire life estimations based on tire types, 

as well as the quantitative factors affecting the tire life regarding truck and road 

specifications (Caterpillar, 2014). Thus, the tire service life estimation was achieved 

by integrating the related average tire life and factors into the modified truck 

dispatching model. In this regard, according to the information by Goodyear Tire 

and Rubber Co., Table 4.6 represents the factor values changing based on the truck 

and road conditions and Table 4.7 shows the average tire life depending on tire types  

Table 4.6 Tire Service Life Estimation Factors (Caterpillar, 2014) 

Condition Factor Condition Factor 
Maintenance  Speeds (Max.)  

Excellent  1.090 16 km/h 1.090 
Average  0.981 32 km/h 0.872 
Poor 0.763 48 km/h 0.763 
Surface Conditions  Wheel Positions  

Soft Earth - No Rock  1.090 Trailing  1.090 
Soft Earth - Some Rock  0.981 Front  0.981 
Well Maintained  0.981 Driver (Rear Dump) 0.872 
Poorly Maintained 0.763 Driver (Bottom Dump)  0.763 
Blasted - Sharp Rock  0.654 Driver (Self Propelled Scraper)  0.654 
Curves  Grades (Drive Tires Only)  

None 1.090 Level 1.090 
Medium 0.981 5% Max. 0.981 
Severe 0.872 15% Max. 0.763 
Loads   Other Miscellaneous Combinations 
Recommended Load 1.090 None 1.090 
20% Overload 0.872 Medium 0.981 
40% Overload 0.545 Severe 0.872 
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Table 4.7 Base Average Life Depending on Tire Type (Caterpillar, 2014) 

Type of Tire Base Average Life 
 Hours km 

E-3 Std. Bias Tread 2,510 40,400 
E-4 Bias Xtra Tread  3,510 56,500 
E-4 Radial Xtra Tread  4,200 67,600 

 

Within this context, the tire service life can be estimated by multiplying the base 

average tire life by the appropriate factors determined for each condition (Caterpillar, 

2014). These factors were determined considering the operational specifications of 

CAT 789C and the road conditions defined in truck dispatching model. In this sense, 

since the type of tire is E-4 Radial, the base average tire life was indicated as 4,200 

hours. Moreover, the excellent road maintenance and the recommended payload 

were assumed to be achieved, while the other miscellaneous combinations were 

neglected. In addition, factors related to speed, surface condition, curves and grades 

were determined separately for each road depending on the road specifications. 

Finally, the factor regarding wheel position was specified for front and rear tires 

separately. Thus, the tire service life estimation was achieved by integrating the 

identified average tire life and the factors into the modified truck dispatching model. 

Using the output of the auxiliary simulation model, the lifetime dataset of the fourth 

failure mode (F04) was generated. In the dataset, the time between failure 

occurrences include active operating time as well as operational and administrative 

breaks. In addition, the lifetime dataset was decomposed into tire components with 

respect to wheel positions, and the uptime characterizations were analyzed for each 

tire separately. It was assumed that the identical fleet includes identical trucks, but 

nonidentical tires in terms of F04. Therefore, uptime characterization of F04 was 

performed considering tire positions. 

Since F04 is a non-repairable failure mode, the lifetime datasets of this failure mode 

was considered as stationary. Therefore, the parameters were estimated using best-

fit distributions. Parametric values of lifetime functions of F04 determined for each 
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tire are represented in Table 4.8 and corresponding probability density functions are 

shown in Figure 4.8. It is observed that time between failure (TBF) characterizations 

of F04 can be identified using Johnson Transformation with unbounded distribution 

type for each tire.  

Table 4.8 Lifetime Parameters of F04 

Wheel Position Model Parameters P-value 
Left Front Johnson Trans. γ=-0.38; δ=0.68; ε=15.8; λ=5001 0.80 
Right Front Johnson Trans.  γ=-0.93; δ=0.43; ε=8.8; λ=4988 0.32 
Left Rear Outer Johnson Trans.  γ=-0.83; δ=0.37; ε=2.9; λ=4895 0.15 
Left Rear Inner Johnson Trans.  γ=-0.35; δ=0.28; ε=8.9; λ=4909 0.16 
Right Rear Inner Johnson Trans.  γ=-0.40; δ=0.37; ε=11.0; λ=4904 0.21 
Right Rear Outer Johnson Trans.  γ=-0.94; δ=0.40; ε=4.5; λ=4895 0.18 

 

 

Figure 4.8 Probability Density Functions of Lifetime Dataset for F04 

Moreover, the confidence intervals using a 95% confidence level were constructed 

for each distribution identified in statistical analysis, in order to indicate the upper 

and lower bounds of TBF and TTR values to be assigned in the model. These bounds 
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representing minimum and maximum values of TBF and TTR can be examined in 

the table in Appendix B. 

Besides the quantitative dataset provided by the company, some subjective data was 

also acquired covering the expert opinions on the expected inventory cost items. The 

cost of production loss per hour was considered as the lost revenue of the haulage 

operations due to system halts, and assumed to be 1.8 $/bank m3 material haulage. 

Estimated values of purchasing cost for Goodyear 37.00-R57 type tire, fixed 

ordering cost, inventory holding cost, and production loss cost used in the model are 

summarized in Table 4.9. In addition, lead time was assumed to be uniformly 

distributed between 20 and 30 days, regardless of the batch size of the order. Herein, 

lead time was considered as the time between the point where an order needs to be 

placed, and acquisition of the product, including administrative approval, order 

placement, and shipping processes. 

Table 4.9 Estimated Cost Values 

Cost Items Costs ($) 

Unit purchasing cost of a component 30,000 

Ordering cost per order 300 

Inventory holding cost per day per item 10 

Production loss cost per hour per truck 300 

In addition, as mentioned in Section 3.2, the initial inventory level is a scenario-

specific value and determined by multiplying a coefficient, 𝑛𝑛, specified for each 

policy by a certain policy parameter. Hence, the initial inventory level was 

considered as 𝑛𝑛𝑛𝑛 for (s, Q) inventory policy; 𝑛𝑛𝑛𝑛 for (s, S) inventory policy; 𝑛𝑛𝑛𝑛 for 

(R, Q) inventory policy; and 𝑛𝑛𝑛𝑛 for (R, S) inventory policy. In this sense, the 

coefficient of 𝑛𝑛 was assumed as 2 for (s, Q) and (R, Q) inventory policies, and 1 for 

(s, S) and (R, S) inventory policies. Moreover, inventory capacity and the number of 

maintenance crew were not constrained.  
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Furthermore, the downtimes caused by stock-out and maintenance activities may 

overlap with the planned administrative breaks, such as shift and lunch breaks. 

Considering that there are three 30-minute shift breaks and 1-hour lunch break in a 

day, the trucks are expected to operate for 21.5 hours a day. Thus, the administrative 

availability of the trucks was calculated as 90%. Therefore, administrative halts are 

dropped from the downtime for achieving an unbiased downtime calculation caused 

by maintenance activities and potential stock-out conditions. 

As mentioned in Section 3.3, the other input parameters in the algorithm are the 

failure detection periods, and failure mode superiorities for each failure mode. If a 

failure has not yet occurred but is within a failure detection period during which 

deterioration can be observed, a preventive maintenance can be performed for that 

upcoming failure mode. For such a case, duration of this preventive action should be 

lower than allowable limits, which is the multiplier of the active maintenance 

duration. This multiplier can be assigned administratively. In this sense, considering 

the F02 and F03 cannot be detected in advance of the failure occurrence, failure 

detection periods were identified only for the F01 and F04. It was assumed that the 

deterioration due to F01 and F04 can be observed by the operators checking the truck 

using pre-start checklists just before the shift. Thus, the failure detection period for 

F01 and F04 was assumed as 8 hours while it was neglected for F02 and F03. In 

addition, the coefficient utilized to check the failure detection period condition and 

multiplied by the repair time of the current maintenance plan was assumed as a 

comparably large value. Besides, recall that superiority is a condition observed when 

a maintenance operation being performed also repairs some other failure mode(s) 

inherently for the same tire. In this context, Table 4.10 consisting of binary variables, 

indicates the superiorities among the failure modes. If a superiority on any failure 

mode is available, the superior failure mode takes the value of 1. For example, F01 

is not a superior to any failure mode, while F02 is a superior to F01. Besides, each 

failure mode is a natural superior to itself. 
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Table 4.10 Failure Mode Superiorities 

Superiorities F01 F02 F03 F04 
F01sup 1 0 0 0 
F02sup 1 1 0 0 
F03sup 1 0 1 1 
F04sup 1 0 0 1 

4.2.2 Results and Discussion of the Optimization Outputs 

After processing and introducing the input dataset, the developed algorithm is 

computed to find out the most cost-effective inventory policy and its parameters 

among multiple scenarios, including different inventory policy types with different 

triggering mechanisms. Due to stochasticity embedded in the algorithm, the model 

with a 5-year observation period was simulated 500 times for each scenario. As 

represented in Figure 4.9, the average annual inventory system cost of the scenario 

of (s, Q) inventory policy, defined as (2, 20), becomes stable after 230th simulation. 

It means that 230 simulation of a 5-year period is a good representative of the 

inventory system analyzed using the given dataset. 

 

Figure 4.9 Cumulative Average of Annual System Cost Results by Increased 

Replication Number for the Scenario (2, 20) of the (s, Q) Inventory Policy 

3,260,000

3,280,000

3,300,000

3,320,000

3,340,000

3,360,000

3,380,000

3,400,000

3,420,000

0 100 200 300 400 500

C
um

ul
at

iv
e 

A
ve

ra
ge

 o
f 

A
nn

ua
l S

ys
te

m
 C

os
t (

$)

Replication Number



 

80 
 

 

The continuous and periodic inventory policies have been analyzed and discussed 

separately, since their dynamics and implementation principles differ. For each 

inventory policy, different number of scenarios were defined where the policy 

parameters vary in the different ranges. Thus, the range of analysis utilized for the 

case study is summarized in Table 4.11. 

Table 4.11 Range of Analysis 

Inventory Policy  Parameters Minimum Maximum Number of Scenarios 

(s, Q) 
s 0 10 

156 
Q 20 46 

(s, S) 
s 5 12 

122 
S 25 60 

(R, Q) 
*R 2,880 7,200 

124 
Q 5 70 

(R, S)  
*R 24 3,600 

99  S  20 60 

* in hours    Total 501 
 

The analysis results for the continuous inventory policies in terms of the average 

annual inventory system cost are shown in Figure 4.10 and Figure 4.11 for the (s, Q) 

and (s, S) policies, respectively. 

  

Figure 4.10 Average Annual System Cost Results for the (s, Q) Policies 
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Figure 4.11 Average Annual System Cost Results for the (s, S) Policies 
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(s, S), observed to be more financially effective, was obtained as the most optimal 

scenario of the continuous review inventory policies.  

Besides, the analysis results for the periodic inventory policies in terms of average 

annual inventory system cost for each scenario are shown in Figure 4.12 and Figure 

4.13 for the (R, Q) and (R, S) policies, respectively.  

 

Figure 4.12 Average Annual System Cost Results for the (R, Q) Policies 

 

 

Figure 4.13 Average Annual System Cost Results for the (R, S) Policies 
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For (R, Q) the inventory policy, the fixed batch size Q was incremented by 5 where 

the review period R was incremented by one month. The minimum point of the 

analysis was observed to be the scenario (6,480, 45), and a detailed analysis was 

performed around the minimum point. At this point, as it is indicated in the dashed 

lines in Figure 4.12, the fixed batch size Q was incremented by 2, and the review 

period R was updated as ± 5 days of to the minimum point for a better investigation. 

According to the results, the optimal scenario was achieved as (6,480, 45) among 

124 scenarios. Thus, an annual system cost of $2,608,617 was obtained where the 

fixed batch size of 45 is ordered in every 6,480h.  

On the other hand, for (R, S) inventory policy, the inventory level S was incremented 

by 5, while the review period R was examined by monthly increments. The 

minimized value was observed at the scenario (720, 35) and a more detailed analysis 

was performed around this minimized value. Accordingly, as indicated in the dashed 

lines in Figure 4.13, the interval increment for inventory level S was taken as 2. 

Moreover, the review period R was updated to cover fifteen and five days before and 

after the review period captured at the minimum point. According to the results, the 

optimal scenario was achieved as (720, 36) among 99 scenarios. Thus, annual system 

cost of $2,686,966 was observed where the fixed batch size of 36 is ordered in every 

720h. Comparing the optimal scenarios of these two policies, the scenario defined as 

(6,480, 45) of the inventory policy (R, Q), more financially effective, was obtained 

as the most optimal scenario of the periodic review inventory policies.  

As stated in Section 3.3, for periodic review inventory policies, the model may allow 

an order to be placed when a truck experiences a stock-out condition, even if the next 

review period has not arrived yet. If such conditions are experienced, these policies 

can be called induced periodic review policies. Herein, non-induced periodic review 

policies were defined that neglects this triggering mechanism. Thus, the model has 

been modified in a way that an order is placed only if the review period has arrived. 

For these non-induced periodic review inventory policies, investigation ranges and 

number of scenarios were defined exactly same with the induced periodic review 

inventory policies, except for the minor scale analyses. The analysis results of non-
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induced periodic inventory policies in terms of annual inventory cost for each 

scenario are shown in Figure 4.14 and Figure 4.15 for non-induced (R, Q) and non-

induced (R, S) policies, respectively. 

 

Figure 4.14 Average Annual System Cost Results for Non-Induced the (R, Q) 

Policies 

 

Figure 4.15 Average Annual System Cost Results for Non-Induced the (R, S) 

Policies 
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For the non-induced (R, Q) policy, the results show that the optimal scenario was 

achieved as (6,480, 45) among 82 scenarios. Thus, annual system cost of $2,608,865 

was reached where the fixed batch size of 45 is ordered every 6,480h. For the non-

induced (R, S) policy, the results reveal that the optimal scenario was achieved as 

(720, 35) among 54 scenarios. The annual system cost is expected to be $2,690,225 

with a fixed batch size of 35 ordered every 720h. Comparing the optimal scenarios 

of these two non-induced policies, the scenario defined as (6,480, 45) of the non-

induced (R, Q) policy, was determined as the most optimal policy of the non-induced 

periodic review inventory policies. Since there is not any observable difference 

between the cost values of the optimal scenarios for the induced and the non-induced 

periodic review inventory policies, it can be inferred that the production loss cost 

due to stock-out downtime has a balance with the purchasing and holding costs. 

Hence, comparing the best scenarios of all four periodic review inventory policies, 

the scenario defined as (6,480, 45) of the induced (R, Q) policy having an annual 

system cost of $2,608,617 was obtained as the most optimal scenario of the periodic 

review inventory policies. 

In brief, among 637 scenarios in total, the best scenarios for the continuous and the 

periodic review inventory policy types were indicated as (s=9, S=49) and (R=6,480, 

Q=45), respectively. For better understanding of the working principles of the 

algorithm, the optimal scenarios identified for each review policy together with their 

two extreme scenarios were analyzed in detail. In this sense, for the continuous 

review policy of (s=9, S=49), two extreme scenarios were identified as (s=9, S=29) 

and (s=9, S=449). Thus, detailed output variables were inserted to the model 

covering a 5-year period and simulated 500 times for each of these three scenarios. 

According to the statistical analysis conducted on the outputs, stock-out downtimes 

and maintenance downtimes of the system were fitted into best distributions. It was 

observed that stock-out and maintenance downtimes of these three scenarios can be 

identified using Johnson Transformation with bounded distribution type with the 

parameters represented in Table 4.12. 
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Table 4.12 Johnson Transformation Parameters of the Output Dataset for the (s, S) 

Policies 

Scenario Downtime Parameters P-value 

s=9 S=29 
Stock-out γ=0.28; δ=0.69; ε=-11.57; λ=595 0.28 
Maintenance γ=1.75; δ=1.51; ε=-3.30; λ=37.91 0.18 

s=9 S=49 
Stock-out γ=1.07; δ=0.87; ε=-11.21; λ=451 0.16 
Maintenance γ=0.48; δ=0.96; ε=-1.16; λ=20.11 0.52 

s=9 S=449 
Stock-out - - 
Maintenance γ=0.92; δ=0.99; ε=-0.92; λ=23.12 0.23 

 

Figure 4.16 illustrates the histograms and the box plots representing the annual 

statistics of the original output data of stock-out and maintenance downtimes of the 

best and two extreme scenarios for the continuous review policy. Fit-lines on the 

histograms point to the Johnson Transformation distribution lines where the red dots 

on the box plots represent the expected value of the back-transformed data for the 

corresponding scenario. Using the outcomes of these three scenarios, the operational 

characteristics of the system were summarized in an annual framework as given in 

Table 4.13. 

 

Figure 4.16 Statistics of the Annual Stock-out and Maintenance Downtimes for the 

Continuous Review Policy Scenarios 
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Table 4.13 Annual Operational Characteristics of the Continuous Review Policy 

Scenarios 

System Characteristics (s=9 S=29) (s=9 S=49) (s=9 S=449) 
% Truck Availability 86.44 88.11 88.20 
% Operational Truck Availability 96.49 98.34 98.44 
% Stock-out Downtime 56.26 5.80 0.00 
% Prob. of having Stock-out at least once 100 68.20 0 
Maximum Number of Stock-out 9 3 0 
Expected No. of Maintenance  121 122 123 
Expected No. of Replacement 68 69 69 
Expected No. of Stock-out 5 ≤ 3 0 
Expected No. of Order 4 2 1 

 

First of all, it was observed that the truck availabilities increase as the order quantity 

increases, as expected. Likewise, the annual expected numbers of maintenance and 

replacement increase as the order quantity increases since operations are not 

interrupted by stock-out condition. In addition, it was observed that the percentile 

weight of stock-out downtime, the probability of having stock-out at least once, and 

the expected numbers of stock-out and order decrease as the order quantity increases. 

For the best-case scenario of the continuous review policy, an average of 122 

maintenance activities are expected to take place in a year where 69 out of 122 

activities require component replacement. In addition, it is observed that the system 

encounters with stock-out condition at most 3 times in a year, among 500 

replications. Accordingly, the probability of having stock-out at least once a year 

was calculated as 68.20%, where the stock-out number is detected to be 3 at most. 

Herein, the most important parameter is not how many times the system is 

experiencing the stock-out condition, but the total downtime caused by stock-out 

conditions. Therefore, percentile weight of stock-out downtime in the total downtime 

was estimated to get a more accurate approach on this topic. At this point, the stock-

out downtime weight was calculated as 5.80% for the best-case scenario. Thus, since 

the complete elimination of the stock-out condition by increasing the order quantity 

causes an observable jump in the direct cost, it was concluded that the system ensures 
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the balance between the cost items by allowing stock-out in a certain extent in the 

best-case scenario. 

Similarly, for the periodic review policy having the optimal scenario as (R=6,480, 

Q=45), two extreme scenarios were identified as (R=6,480, Q=5) and (R=6,480, 

Q=70). Thus, these three scenarios were simulated 500 times each for an observation 

period of 5-year. Stock-out and maintenance downtimes obtained from each 

simulation run were fitted into best distributions. It was observed that stock-out and 

maintenance downtimes of these three scenarios can also be identified using Johnson 

Transformation with bounded distribution type, and the parameter values are 

represented in Table 4.14. Figure 4.17 illustrates the histograms and the box plots 

representing the original output data. Fit-lines on histograms refer to the Johnson 

Transformation distribution lines. The red dots on the box plots are the expected 

values of the back-transformed data for the corresponding scenario. The annual 

operational characteristics of the system were also obtained as shown in Table 4.15. 

  

Figure 4.17 Statistics of the Annual Stock-out and Maintenance Downtimes for the 

Periodic Review Policy Scenarios 
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Table 4.14 Johnson Transformation Parameters of the Output Dataset for the (R, 

Q) Policies 

Scenario Downtime Parameters P-value 

R=6,480 Q=5 
Stock-out γ=-2.29; δ=1.73; ε=-960; λ=1732 0.12 
Maintenance γ=0.84; δ=1.10; ε=-1.81; λ=25.91 0.20 

R=6,480 Q=45 
Stock-out γ=0.40; δ=0.66; ε=-3.93; λ=663 0.68 
Maintenance γ=0.74; δ=1.24; ε=-2.26; λ=23.76 0.33 

R=6,480 Q=70 
Stock-out - - 
Maintenance γ=0.67; δ=1.29; ε=-2.92; λ=25.35 0.14 

 

Table 4.15 Annual Operational Characteristics of the Periodic Review Policy 

Scenarios 

System Characteristics (R=6,480 Q=5) (R=6,480 Q=45) (R=6,480 Q=70) 
% Truck Availability 62.93 88.16 88.19 
% Operational Truck Availability 70.24 98.40 98.44 
% Stock-out Downtime 96.35 2.41 0.00 
% Prob. of having Stock-out at least once 100 19.40 0 
Maximum Number of Stock-out 40 2 0 
Expected No. of Maintenance  86 123 123 
Expected No. of Replacement  48 69 69 
Expected No. of Stock-out 36 ≤ 2 0 
Expected No. of Order 10 2 2 

 

For the optimal scenario of the periodic review policy, an average of 123 

maintenance activities are expected to take place in a year, where 69 of them are 

performed as component replacement. It was also observed that the system goes into 

stock-out state due to component replacement requirement could not met at most 2 

times in a year, among 500 replications. Accordingly, the probability of having 

stock-out at least once a year was calculated as 19.40%. The maximum number of 

stock-out expected for a year is determined as 2. Percentile weight of the stock-out 

downtime in the total downtime is calculated as 2.41% for the best-case scenario. It 

was again observed that the system provides a balance between direct and indirect 
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financial consequences of the inventory policy and allows stock-out in a certain 

extent even for the optimal scenario.  

The company is expected to specify an inventory policy, among the optimal 

scenarios of continuous or periodic review policy types. However, this decision 

depends on a number of factors related to dynamics of the current inventory 

management system and the corporate structure, where the inventory activities are 

established considering productivity, availability, supplier structure, and the 

financial risk appetite of the company. Inventory management applications of many 

companies do not align with the scheduled inventory policies at strategical level 

since the policies are generally incapable of predicting the uncertainties in inventory 

supply-chain, deteriorations in operating equipment, variations in system availability 

requirements, and robustness of the available inventory policies. Moreover, the 

inventory records on the indirect cost items are not kept adequately detailed. 

Therefore, the overall assessment of the total cost of an inventory management 

system cannot be achieved. Hence, since a valid comparison in terms of total system 

cost between the company’s policy and the optimal policy cannot be performed in 

many industrial cases, the companies are prone to keep their inventory policies 

without evaluating their cost-wise and operational effectiveness. In this regard, a 

mining company may determine the most suitable review policy using the developed 

algorithm in the current study so that a clear comparison between the available and 

the optimal policies can be achieved.



 

91 
 

 

CHAPTER 5  

5 CONCLUSIONS AND RECOMMENDATIONS  

5.1 Conclusions 

Spare parts inventory is one of the major challenges, especially for production 

industries, since such inventory policies need continuous improvement specific to 

the production system and the working environment. Particularly, in machine-

intensive sectors where the operational uncertainties are quite high, many other 

difficulties in predicting uptime and downtime behaviors of machinery components 

and the resultant spare part requirements can be experienced. For companies utilizing 

sophisticated technologies, the overstocking or understocking of spare parts can be 

vital to satisfy the requirement of mass and continuous production at relatively low 

capital investment. This condition is based on the company's financial and 

operational risk appetite that is highly changeable depending on the sector dynamics. 

In this regard, this study intends to develop a multi-scenario discrete-event 

simulation algorithm to optimize spare parts inventory problems with a dynamic and 

stochastic structure with a preventative of many different inventory systems. The 

multi-scenario structure of the algorithm is provided by utilizing parametric 

combinations of two continuous review policies defined as (s, Q) and (s, S) and two 

periodic review policies defined as (R, Q) and (R, S). The study methodology covers 

(i) identification of the system dynamics and characterization of uptime/downtime 

behaviors of the components, (ii) development of system configuration, and 

integration of inventory policies and maintenance actions into Arena® Software, (iii) 

implementation of the case study and optimization of the introduced inventory 

policies, and (iv) analyzing the inventory policies and their parameters, and 

evaluating the sensitivity of the total system cost to changing system decisions. 
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The proposed discrete-event simulation model was applied to the tires of a truck fleet 

operated in a surface coal mine in Turkey. This fleet covers seven homogeneous 

trucks with six tires each. A preliminary analysis using the tire failure dataset and 

the expert opinions reveals that four types of tire failures, deflation, cuts and 

punctures, impact damage, and irregular wear, are observed as tire failure modes. 

Then, the model is implemented using failure mode characteristics and four well-

known inventory policies, (s, Q), (s, S), (R, Q), and (R, S) to comparatively evaluate 

both continuous and periodic inventory reviewing approaches. Hence, a total of 637 

scenarios were generated from different reviewing and triggering mechanisms, and 

each scenario is simulated for a 5-year observation period. According to the results, 

the optimal scenarios for continuous and periodic review inventory policies were 

determined as (s=9, S=49) and (R=6,480, Q=45), respectively. An annual system 

cost of $2,604,032 was observed for the most optimal continuous review policy 

where the spare parts are ordered up to an inventory level of 49 whenever the 

component number in the inventory drops to 9. On the other hand, an annual system 

cost of $2,608,617 was reached for the most optimal periodic review policy where 

the fixed batch size of 45 is ordered every 6,480h. Besides, it was observed in both 

approaches that the system ensures the balance between direct and indirect cost items 

by allowing stock-out conditions to a certain extent even in the optimal scenarios.  

The current model can be applied to different spare parts inventory problems of 

different sectors to determine the cost-wise best policies regarding the up-to-date 

machine and operational dynamics valid in the production area. Accordingly, the 

implementation part compares 637 scenarios by interacting tire failure behaviors 

with the parametric variations of four different types of inventory policies. Even 

though the model gives the most optimal options for continuous and periodic 

reviewing approaches, its comparison with the current total inventory cost in the 

mine could not be achieved since the policy parameters applied for a regular tire 

inventory are still missing due to potential shortages in the tire procurement. 

Consequently, the company may use the developed algorithm to determine the most 

optimal inventory policy and integrate it into their current inventory management 

structure. 
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5.2 Recommendations 

A comprehensive multi-scenario discrete-event simulation model was established 

for the optimization of spare parts inventory problems available in production 

industries. This research study can be improved considering the following 

recommendations in future studies: 

i. Joint inventory optimization of different spare parts, which may have a 

mutual interaction at operational level, can be considered to develop a more 

holistic inventory management system. 

ii. In addition, component deterioration rate in the inventory and the limitations 

in inventory capacity according to the component types can be included into 

the model so that the long-term effectiveness of inventory decisions can be 

analyzed. 

iii. Maintenance policy can be extended by considering imperfect maintenance, 

component rotation, and crew capacity and competency to reveal the impact 

of maintenance effectiveness on inventory decisions. 

iv. Besides, supplier-based constraints such as multi-supplier structure, quantity 

discount, and minimum order quantity can be considered in the future studies 

so that the impact of supplier structure on inventory decisions can be 

examined. 

v. Fluctuations and shortages in the global and domestic market for the 

corresponding spare parts can be integrated into the future model so that the 

effect of the market movement on the inventory decisions can be inspected. 

vi. Additional constraints/variables regarding operational and environmental 

conditions can be introduced into the future model, such as tire condition 

monitoring system, driver competency, seasonality effect on operations, and 

spare machines used in a stand-by operation configuration to extend the 

available knowledge on inventory management. 
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APPENDICES 

A. Scatter Plots for Lifetime Datasets of F02 and F03 

 

Figure 5.1 Data Independency Test for the Lifetime Data of F02 

 

Figure 5.2 Data Independency Test for the Lifetime Data of F03 
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B. Confidence Intervals of TBF and TTR Values 

Table 5.1 Upper and Lower Bounds of TBF and TTR Values 

Code TBF - Min. (h) TBF - Max. (h) TTR - Min. (h) TTR - Max. (h) 
F01 18 6,798 0.07 17.49 
F02 360 30,175 1.75 20.65 
F03 283 35,600 3.20 22.87 
F04 - Left Front 4,948 6,001 

3.20 22.87 

F04 - Right Front 4,945 7,979 
F04 - Left Rear Outer 4,859 8,391 
F04 - Left Rear Inner 4,845 7,632 
F04 - Right Rear Inner 4,837 8,047 
F04 - Right Rear Outer 4,865 7,532 
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